现如今,很多企业都开始重视数据仓库的构建,其实构建数据仓库不是一个难事,难的地方在于如何构建企业级的数据仓库,这对于企业来说是一件十分困难又必须提上日程的事情。不过,不要灰心,虽然困难,但是我们也可以通过一些方法去构建企业数据仓库,在这篇文章中我们就给大家介绍一下构建数据仓库的步骤。
构建企业级的数据仓库第一步就是要确定主题,其实确定主题就是确定数据分析或前端展现的主题。主题要体现出某一方面的各分析角度和统计数值型数据之间的关系,确定主题时要综合考虑。这一点是非常重要的,大家一定要重视。
第二个步骤就是确定量度。当我们确定主题后,需要考虑分析的技术指标。一般来说,这些都是数据值型数据,其中有些度量值不可以汇总。有些是可以汇总起来,以便为分析者提供有用的信息。量度是要统计的指标,必须事先选择恰当,基于不同的量度可以进行复杂关键性指标的设计和计算。
第三个步骤就是确定事实数据粒度。当我们确定量度之后,需要考虑该量度的汇总情况和不同维度下量度的聚合情况。如果我们按照“天”为单位来汇总数据的在ETL处理过程中,按天来汇总数据,些时数据仓库中量度的粒度就是“天”。如果不能确认将来的分析需求中是否要精确的秒,那么,我们要遵循”最小粒度原则”,在数据仓库中的事实表中保留每一秒的数据,对数据提前进行汇总,保障产生分析结果的效率。
第四个步骤就是确定维度,其实维度是分析的各个角度。基于不同的维度,可以看到各个量度汇总的情况,也可以基于所有的维度进行交叉分析。
第五个步骤就是创建事实表。在确定好事实数据和维度后,将考虑加载事实表。业务系统的的一笔笔生产,交易记录就是将要建立的事实表的原始数据。具体的做法是将原始表与维度表进行关联,生成事实表。关联时有为空的数据时,需要使用外连接,连接后将各维度的代理键取出放于事实表中,事实表除了各维度代理键外,还有各度量数据,不应该存在描述性信息。
在这篇文章中我们给大家介绍了构建企业级数据仓库的相关步骤,相信大家看了这篇文章以后已经对数据仓库有所了解了吧?大家在构建数据仓库的时候一定要谨遵上面的步骤进行操作,这样才能够提高工作效率,少走弯路,更出色地完成工作任务。