三种经典的数据挖掘算法

2020/09/28 06:30

算法,可以说是很多技术的核心,而数据挖掘也是这样的。数据挖掘中有很多的算法,正是这些算法的存在,我们的数据挖掘才能够解决更多的问题。如果我们掌握了这些算法,我们就能够顺利地进行数据挖掘工作,在这篇文章我们就给大家简单介绍一下数据挖掘的经典算法,希望能够给大家带来帮助。

1.KNN算法

KNN算法的全名称叫做k-nearest neighbor classification,也就是K最近邻,简称为KNN算法,这种分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似,即特征空间中最邻近的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法常用于数据挖掘中的分类,起到了至关重要的作用。

2.Naive Bayes算法

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。这种算法在数据挖掘工作使用率还是挺高的,一名优秀的数据挖掘师一定懂得使用这一种算法。

3.CART算法

CART, 也就是Classification and Regression Trees。就是我们常见的分类与回归树,在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。这两个思想也就决定了这种算法的地位。

在这篇文章中我们给大家介绍了关于KNN算法、Naive Bayes算法、CART算法的相关知识,其实这三种算法在数据挖掘中占据着很高的地位,所以说如果要从事数据挖掘行业一定不能忽略这些算法的学习。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司