现在大数据可以说是非常火热的,很多年轻人都会选择通过一些学习或者培训来加入到这个行业。但是,大数据的学习其实是比较困难的,这是因为大数据学习中有很多的内容,深浅不一,难度升级,如果想要完全学通基本上是不可能的。那么,在学习大数据的时候有哪些比较实用的建议呢?
一、需要重视的是培训和众包,什么是众包呢?众包是一种基于互联网的创新生产组织形式,企业利用网络将工作分配出去,通过让更合适的人群参与其中来发现创意和解决问题。就目前而言,众包和开源的组合极大推动了IT产业的快速发展,当企业和研究者可在众包上发布数据,数据分析人员可在其上进行竞赛以产生最好的模型。这一众包模式本质就是集体智慧编程的体现,即有众多策略可以用于解决几乎所有预测建模问题,而分析人员不可能一开始就能找到最佳方案,我们通过众包的形式来解决这一难题,进而使数据科学成为一场集体智慧运动。
二、需要大家知道的是,大数据的兴起只是说明了一种现象,随着科技的高速发展,数据在人类生活和决策中所占的比重越来越大。面对如此广度和深度的大数据技术栈和工具集,如何学习和掌握好大数据分析这种技能,这就需要大家根据自身的实际情况进行学习。不过技术的学习和应用也是相通的,条条大路通罗马,关键是要找准切入点,理论与实践结合,有全局观,工程化思维,对复杂系统设计开发与关键技术体系的主要矛盾要有所把握。熟悉大数据基础理论与算法、应用切入、以点带面、举一反三、横向扩展,从而构建完整的大数据知识结构和核心技术能力,这样的学习效果就会好很多。
当然,技术发展也遵循量变到质变规律,我们都知道,人工智能、物联网、大数据、云计算是四位一体发展的,未来智能时代的基础设施、核心架构将基于这四个层面,这种社会演化趋势也很明显。从农业时代到工业时代,再到互联网时代,然后就是智能化时代。在这个四位一体智能技术链条里面,物联网重在数据采集,云计算重在基础设施,大数据技术处于核心地位,人工智能则是发展目标,所以学习大数据技术还需要对这四个方面加以综合研究和理解。这样才能够学好大数据。
总的来说,大数据学习是一个持续不断的过程,无论是参加课程还是自学,都只是让我们具备进入这个行业的基本条件,个人思维的锻炼和提升也要并驾齐驱,不能单单是一味被灌输知识而不自己思考。希望小编的这篇文章能对大家有所帮助。