数据挖掘的常用方法都有哪些?

2020/09/28 06:58

在数据分析中,数据挖掘工作是一个十分重要的工作,可以说,数据挖掘工作占据数据分析工作的时间将近一半,由此可见数据挖掘的重要性,要想做好数据挖掘工作需要掌握一些方法,那么数据挖掘的常用方法都有哪些呢?下面就由小编为大家解答一下这个问题。

首先给大家说一下神经网络方法。神经网络是模拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳、提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身结构来表达输入和输出的关联知识。神经网络方法在数据挖掘中十分常见。

然后给大家说一下粗糙集方法。粗糙集理论是一种研究不精确、不确定知识的数学工具。粗糙集处理的对象是类似二维关系表的信息表。目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。粗糙集理论能够在缺少先验知识的情况下,对数据进行分类处理。在该方法中知识是以信息系统的形式表示的,先对信息系统进行归约,再从经过归约后的知识库抽取得到更有价值、更准确的一系列规则。因此,基于粗糙集的数据挖掘算法实际上就是对大量数据构成的信息系统进行约简,得到一种属性归约集的过程,最后抽取规则。

而决策树方法也是数据挖掘的常用方法之一。决策树是一种常用于预测模型的算法,它通过一系列规则将大量数据有目的分类,从中找到一些有价值的、潜在的信息。它的主要优点是描述简单,分类速度快,易于理解、精度较高,特别适合大规模的数据处理,在知识发现系统中应用较广。它的主要缺点是很难基于多个变量组合发现规则。在数据挖掘中,决策树常用于分类。

最后给大家说的是遗传算法。遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法。数据挖掘是从大量数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的、潜在有用的信息。因此,许多数据挖掘问题可以看成是搜索问题,数据库或者数据仓库为搜索空间,挖掘算法是搜索策略。

上述的内容就是我们为大家讲解的数据挖掘工作中常用的方法了,数据挖掘工作常用的方法就是神经网络方法、粗糙集方法、决策树方法、遗传算法,掌握了这些方法才能够做好数据挖掘工作。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司