就目前而言,很多人都想跳脱目前的工作状态,转行或跨界到数据分析领域,期盼自己可以做出点成绩出来。寻寻觅觅间,有的人转行或跨界成功了,有的人转行或跨界失败了;有的人生活品质提高了,有的人还在人生十字口徘徊不前。有不少人人看到数据分析行业的就业前景和当前的人才需求,就想转行或跨界到数据分析行业,但是对于数据分析并不是很了解,这就显得有些草率和迷茫了。那么转行或跨界数据分析行业到底需要做什么呢?
如果转行或跨界做数据分析的话,需要学习很多的东西,首先需要了解的是数据分析的步骤,一般来说,数据分析的步骤就是提出问题、理解数据、数据清洗、构建模型、数据可视化等步骤,下面我们来一一解答一下这个问题。
首先是提出问题,我们都知道,一切数据分析的目的都是为了解决我们生活或工作中的实际问题,明确的问题为我们后续的数据分析提供了一个大的方向和目的。提出问题以后我们需要理解数据,理解数据需要采集数据、导入数据、查看数据集的信息,包括描述统计信息,从整体上理解数据。数据清洗就是对数据进行预处理。构建模型就是对清洗过的数据进行分析。简单的分析就是得出一些业务指标;复杂的分析就要用到机器学习的算法来构建模型。数据可视化就是与他人交流你的研究成果,最好的展示方式就是图表。
数据分析中最重要的就是提出问题,这就需要我们和业务人员一起讨论明确他们的需求以及各个指标的计算公式。从而去改进业务中的不合理的地方。其实数据分析的工作中有很多时间都是用在了数据清洗的工作上,由此可见数据分析中数据清洗的重要性了。我们在数据清洗中需要处理缺失数据、删除异常值等等。以便于后期的数据探索和分析。一般来说,原始数据经常会由于记录缺失错误,这时候就会导致有些数据是缺失的。我们可以采用两种办法来处理:第一种就是直接删除缺失的数据;第二种就是通过建立模型进行插值的办法来补充这些数据。
现在的社会就是一个商业社会,如果想转行跨界到数据分析领域,一定要注意上面小编提到的内容,应该会给你的转行跨界之路带来不少帮助和启发。小编觉得,无论是转行成功,抑或跨界失败,我们都要拥有承担后果的能力。最后给大家奉献一句箴言——只有自己拥有了核心竞争力,才不会被逼到淘汰的境地!