矩阵对策在市场竞争中的应用
判别分析(discriminant analysis)又称“分辨法”,属于分类方法的一种,分类的对象要求实现要有明确的类别空间,它是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标,据此即可确定某一样本属于何类。其作用表现在,当描述研究对象的性质特征不全或不能从直接测量数据确定研究对象所属类别时,可以通过判别分析对其进行归类。
在生产、科研和日常生活中经常需要根据观测到的数据资料,对所研究的对象进行分类,例如,银行在贷款给客户时,通常都会根据顾客的基本资料,如学历、收入、借贷记录等,将顾客区分为具有信用之顾客与不具有信用之顾客两种,并且当有新的顾客进来时,也可以按照同样的准则将新顾客的资料与这些已经存在的资料做一比较,看是否应该借钱给这位新的顾客;在经济学中,根据人均国民收入、人均工农业产值、人均消费水平等多种指标来判定一个国家的经济发展程度所属类型;在市场预测中,根据以往调查所得的种种指标,判定下个季度产品是畅销、平常或滞销。判别分析对气候分类、农业区划、医学研究、信用风险管理等课题的研究有非常重要的作用。下面从对全国各省市地区的农民家庭收支的研究中对判别分析进行理解。数据来源于国家统计局,主要包括地区、食品、衣着、燃料、住房、生活用品、文化生活等表现农民收支情况的数据集。通过对25个省市地区的样品进行分析,将其分成了3类,分别是第1、2、3组,待判定的地区为北京、上海、广州三个地区。所要分析的基础数据集如下。(1)采用Box’s-M法进行方差齐性检验。检验结果如下:其对应的概率P值为0.231,大于显著性水平0.05,因此应接受原假设,认为各类别总体下的判别变量协差阵无显著差异,采用Within-group Covariance方法进行判别。(2)判别结果的检验—Wilks’ Lambda检验,其结果如下:
结果表明,第一个判别函数解释了所有变异的84.9%,第二个判别函数解释了15.1%,其后的概率P值均小于0.05,说明两个判别函数都是显著成立的
。
(3)判别函数。 Fisher判别函数: Y1=0.761*燃料+0.710*住房+0.448*生活用品 Y2=0.757*燃料+0.257*住房-0.746*生活用品(4)判别结果。将各样本点代入Fish判别公式中,得到如下图所示的结果。
在具体的判别结果中,第一组的误判概率为16.7%,正确判别率为83.3%,第二组和第三组的误判概率均为0,整体的判别结果较为理想。