7 个你不可不知的大数据定义

2020/09/29 23:38

7 个你不可不知的大数据定义

在大多数人根本不知道大数据(Big Data)到底是什么的时候,不可否认的是,大数据已经在 21 世纪掀起一场惊涛骇浪。根据研究机构 IDC(国际数据资讯公司)的分析,这个世界上的资料正在以每两年就翻倍的惊人速度增加中。了解大数据、如何利用巨量资料,成了人人关心的重点议题。

  尽管大数据的定义各家歧异,但基本上,大数据领域里的每个人都同意一点:大数据不仅仅是指更多资料而已。这篇文章整理出 7 个重要的大数据观点,希望大家不只是看着大数据的表皮,而能用不同的角度深入检视大数据。

1) 最基本的大数据定义 The Original Big Data

  大数据的 3Vs 定义是目前为止最受推崇且最广为人知的说法。3Vs 由 Gartner 的分析师 Doug Laney 最早在 2001 年时提出,分别代表资料量 Volume、资料传输速度 Velocity、资料类型 Variety。从那之后,便有人在 3Vs 之外陆续提出更多「V」, Veracity、Validity、 Value、Visibility 等,其中又以 Veracity (真实性)最被普遍认同。

  3Vs 定义在上一篇文章中有仔细介绍,在这就不详述了,请参考《巨量资料的时代,用「大、快、杂、疑」四字箴言带你认识大数据》。

  2) 大数据即科技 Big Data as Technology

  大数据并不是什么崭新的概念,好几十年前 CERN 的科学家就在处理每秒上看 PB (Peta Bytes)巨量资料。那为什么一直到近几年「大数据」这颗塬子弹才被投到科技圈,轰得人人叁句不离大数据?

  现今要处理的资料量更庞大、资料产生跟处理速度更惊人、资料来源更多样,于是处理、储存大量资料的新技术跟工具快速发展,像是开源软体 Hadoop 跟 NoSQL 资料库。新科技诞生后,开发者跟使用者需要一个专业名词来与之前的科技作出区别,于是「大数据」一词因应而生。

  因此大数据不只是指资料,也指这些用来分析、处理巨量资料的新兴科技。

  “Big Data is the new tools helping us find relevant data and analyze its implications.”


  3) 大数据即不同的资料类型 Big Data as Data Distinctions

  现今「大数据」所涉及的资料已经和过去的资料已经不同了。根据 Hortonworks 公司战略副总裁 Shaun Connolly 的说法1,过去的资料大部分是人工手记下来的交易纪录(Transactions),现在则是机器替我们记录下来的交易资料;除此之外,还有人们跟事物、企业间的互动资料(Interactions),例如人们在网路上点击网页跟连结的纪录;最后则是机器自动生成、累积下来的观察资料(Observations),例如智慧型家居产品记录下来的室温变化等。

  因此 Shaun Connolly 定义大数据是由交易、互动、观察资料所组成的资料型态。

  "Big Data = Transactions + Interactions + Observations"

  4) 大数据即讯号 Big Data as Signals

  SAP 公司的高管 Steve Lucas 不以资料型态来看待大数据,而是以目的(intent)跟时机(timing)。在过去,企业收集到的资料只能在事情发生后引以为鉴,但现在企业收集到的是「新讯号」2,可以在事情发生前得到前兆跟提示,进而做出行动来影响事情结果。例如某品牌广告在社群网站上的「赞」数、点阅率如果跌落谷底,公司便可以预期接下来产品销售量一定也会惨不忍睹;同样的情形在过去时,公司所得到的数据就是产品发售后的销售量。

  “Big Data is the new signals.”

  5) 大数据即机会 Big Data as Opportunity

  根据 451 Research 的数据专家 Matt Aslett,他将大数据定义为「以前因为科技所限而忽略的资料」3,这个说法也受到许多人的赞同,因为多半提起大数据时,都是在讨论这些以前无法分析处理、囊括其中的资料。

  "Big Data is data that was previously ignored because of technology limitations."

  其实他在文中并不是用 Big Data 一字,而是使用「Dark Data(暗数据)」。事实上许多公司都使用暗数据这个字,因为当资料变「暗」了,便表示一个漏掉的讯息、错失的机会,在企业策略中留下一个盲点4。一直以来,各企业雇用数据专家的目的就是希望能「点亮」这些暗数据(illuminate the Dark Data),观察到以前不曾注意过的趋势、做出更全面的考量。

  也因此,SAP 曾经做过一个调查显示,将近 76% 的企业高管们视大数据为「机会」。个人也满喜欢这个观点,毕竟现在各公司在推动大数据的塬因,就是希望能掌握全面的讯息、把握住这些机会!

  "A new survey by SAP suggests that nearly 76 percent of executives see “Big Data” as an opportunity" 5



  6) 大数据的哲学定义 Big Data as Metaphor

  着名的摄影师和出版人,前《Time(时代)》、《Life(生活)》、《National Geographic(国家地理)》杂志摄影师,负责过有史以来最大摄影项目的 Rick Smolan ,在他的着作《大数据的人性面孔》(The Human Face of Big Data)一书中,则给了大数据一个最完美的哲学定义 ——「大数据是帮助地球建构神经系统的一个过程,在这系统中,我们(人类)不过是其中一种感测器。」6

  “Big Data is the process of helping the planet grow a nervous system, one in which we are just another, human, type of sensor.”

  深奥吧?如果你读过《大数据的人性面孔》一书,相信你应该会对这个比喻点头如捣蒜。


  7) 大数据是旧东西的新噱头 Big Data as New Term for Old Stuff

  也有部份人认为,「大数据」一词被严重滥用,大数据只是商业智慧(Business intelligence)或商业分析(Business analytics)演化后的新字7。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司