SPSS数据分析网络游戏行业应用范例

2020/10/04 08:40

SPSS数据分析网络游戏行业应用范例

在网络游戏运营中,如何把注册用户(免费用户)转化成付费用户,是一个非常普遍且现实的问题。在网络游戏试玩初期,游戏运营商为了测试和完善网络游戏以及快速扩大玩家群,通常都会推出一段相对较长的免费试玩期。因此,在网络游戏正式运营前就会存在大量的注册用户,而且这些注册用户会在网络游戏运行后存在很长一段时间。

那么如何把这些注册用户转化成付费客户,真正为游戏运营商带来直观的收益呢?通常市场人员会制定各种营销方式来吸引注册用户成为网络游戏的收费用户,但是市场人员通常并不了解哪些注册用户会对哪种营销方式产生兴趣并产生响应。市场人员往往只能通过广而告知的方法进行营销。这种营销方式的结果就是大量的营销资源被浪费在无效的客户营销中。数据挖掘技术的出现和发展使网络游戏运营商能够对注册用户采取差别化营销,对正确的注册用户采用正确的营销手段,从而提高市场营销活动效率,使企业利润得到最大化。

一、CRISP-DM数据挖掘实施方法论

成功的数据挖掘项目需要有正确的实施方法论来确保项目成功。CRISP-DM挖掘实施方法论(跨行业标准数据挖掘实施方法论)是SPSS公司和NCR公司1990年在德国克莱斯勒公司共同实施数据挖掘项目时制定的。截至目前为止,全球有60%以上的数据挖掘项目都是采用该数据挖掘方法论进行实施。

CRISP-DM数据挖掘实施方法论帮助企业把注意力集中在解决业务问题本身,而不是技术层面上。CRISP-DM流程模型包括了六个步骤,涵盖了数据挖掘的整个过程,它们是:

1、商业理解Business understanding

这一初始阶段集中在从商业角度理解项目的目标和要求,然后把理解转化为数据挖掘问题,并制定出一个旨在实现目标的初步计划。

2、数据理解Data understanding

数据理解阶段开始于原始数据的收集,接下来进行的活动是熟悉数据、识别数据质量问题、探索对数据的第一认识,或挖掘有深层含义的数据子集来形成对隐藏信息的假设。

3、数据准备Data preparation

数据准备阶段包括所有从原始未加工的数据构造最终数据集的活动(这些数据集是指将要嵌入建模工具中的数据)。数据准备任务可能实施多次,而且不按任何规定的顺序。这些任务包括表格、记录和属性选择以及对建模工具中数据的转换和清理。

4、建模Modeling

在此阶段,主要是选择各种建模技术,同时对它们的参数进行校准以达到最优值。通常对于同一个数据挖掘问题类型,会有多种方法。一些方法在数据形式上会有具体的要求。因此,常常必须返回到数据准备阶段。

5、评估Evaluation

进入项目中的这个阶段,你已经建立了一个模型(或者多个),从数据分析的角度来看,该模型似乎有很高的质量。在进行到模型的最后发布前,有一点是很重要的——更为彻底地评估模型和检查建立模型的各个步骤,从而确定它完全地达到了商业目标。一个关键目标为决定是否存在一些重要地商业问题仍未得到充分地考虑。关于数据挖掘结果的使用决定应该在此阶段结束时确定下来。

6、发布Deployment

模型的创建通常并不是项目的结尾。即使模型的目的是增加对数据的了解,所获得的了解也需要进行组织并以一种客户能够使用的方式呈现。这常常包括在一个组织的决策过程中应用“现场”模型,如在网页的实时个人化中或营销数据的重复得分中。不过,根据需要,发布过程可以简单到产生一个报告,也可以复杂到在整个企业中执行一个可重复的数据挖掘过程。大部分情况下,是由客户来实施发布的,而非数据分析师本身。尽管如此,即使分析师并不执行发布,这对客户也是十分重要的——提前理解需要采取什么行动来实际利用产生的模型。

此流程模型有几个关键点。首先,有几个步骤相互之间的影响比较大。比如,数据准备通常在建模之前,但是在建模过程中做出的决策以及收集到的信息可能会导致重新准备数据,这两个步骤相互交叉一直到两个步骤都得到比较好的解决。类似的情况还有,评估步骤会导致重新评估最初的业务理解,用户可能会觉得这是在回答错误的问题。在这一点上,用户可能会重新修订业务理解直到达到更好的目标。

第二点是数据挖掘的迭代特性,很少能有一次性完成整个流程的情况。使用数据挖掘解决客户需求是一个发展的过程。从数据挖掘循环中获得的知识往往会带来新的问题。这些新问题又通过进一步的数据挖掘解决。这个挖掘与找到新问题的过程应当成为用户考虑总体业务战略的一部分。

二、游戏注册用户转化数据挖掘项目实践

CRISP-DM数据挖掘方法论——商业理解

某网络运营商的市场人员了解到本公司目前拥有大量的注册用户,付费客户相应较少。而且大部分的注册用户因为目前只需要使用网站的基本功能,缺少对付费功能的内在需求。因此,如果不采取客户差异化的方式,采用电话呼叫以及服务优惠对客户进行点对点的营销效率很低。市场人员需要明确的了解那些经过电话呼叫营销方式成为本公司付费用户和那些对电话呼叫营销没有响应的注册用户之间行为特征和属性特征的区别,从而对那些有内在需求的客户进行电话营销,提高营销成功率,减少无谓的营销成本。根据业务人员经验,在不采用数据挖掘分析结果前提下进行电话营销成功率只有1%不到,业务人员希望通过该项目的分析结果,能把电话营销成功率提高到3%以上。

数据挖掘实施人员了解到呼叫中心每月最大的呼叫量大概只能覆盖3万个用户。因此,数据挖掘结果只需能对营销响应概率最高的前10%用户中做到尽可能高的准确预测就足够了。另外,数据挖掘人员还调查了企业的硬件资源和数据资源。基于经验,市场人员认为影响注册用户成为付费用户的主要因素有上网方式、性别、注册的时间、最近一次登录的时间等行为和属性因素。另一方面,数据挖掘项目组认为项目成功的主要风险在于网站是否发生重大安全事故以及用户是否能用其他手段非法登陆系统。最后,为了确保市场分析人员和技术人员对专业术语以及数据挖掘目标见解的一致性(如何算响应客户,客户在接受过电话营销后多久时间内成为付费用户为响应客户),数据挖掘项目组用书面的方式对各类术语做出明确的解释,并对数据挖掘项目的成本和收益计算方式进行了明确的定义。

基于市场人员制定的商业目标,数据挖掘项目组把商业目标细化为多个数据挖掘目标:发掘潜在的营销响应客户以及根据用户使用行为及属性行为聚类,了解不同用户群的特征及响应程度,帮助市场人员定位客户,了解客户。最后,项目制定明确的项目计划并选择SPSS Clementine作为他们的数据挖掘产品。

CRISP-DM数据挖掘方法论——数据理解

完成商业理解后,该数据挖掘项目组根据前面的业务假设进行数据收集、描述数据内容、分析数据的分布、缺失、是否和预测目标相关等内容。通常,数据挖掘项目的数据来源于多个不同的数据源,例如数据仓库、市场调研数据等等。

Clementine数据源功能面板

利用SPSS Clementine的数据源功能面板中的数据库、文件、SPSS等数据导入节点导入数据;通过SPSS Clementine输出功能面板中的数据审核节点了解数据分布情况以及数据质量情况,对进入数据挖掘模型的数据进行初选。通常,那些数据缺失严重,数据分布有问题(例如:大部分客户的年龄分布在0-1岁等)都会在这一步进行排除。另外,数据挖掘项目组还对重要因素用直方图、条形图观察,分析这些因素是否和预测目标之间有着强烈的关系以验证先前业务假设是否正确。如果分析结果和业务假设不一致,则数据挖掘项目组需要返回到商业理解阶段重新评估现有数据是否支持业务的商业目标;数据挖掘目标是否正确;业务分析思路是否有问题等等。

CRISP-DM数据挖掘方法论——数据准备

数据准备在数据挖掘项目中是一个非常重要的环节。数据挖掘界有句俗话“垃圾进,垃圾出”。高质量的数据加上高质量的数据准备是确保数据挖掘项目成功的重要保证。在数据准备期间,数据挖掘实施人员需要基于业务分析思路,利用已有数据生成其他派生变量来提高模型的准确性(例如:通过最近一个月的登录频度和前一个月的登录频度生成最近一个月登录频度变化率)。因为,模型算法本身并不能分析出因素之间的潜在关系和预测结果之间的关联。

CRISP-DM数据挖掘方法论——建立模型

完成商业理解后,该数据挖掘项目组根据前面的业务假设对数据进行收集,通过数据挖掘分析结果和营销手段相结合。

附录:SPSS Clementine简介

SPSS Clementine的可视化、操作的简便性以及丰富的算法,不但使SPSS Clementine成为全球所有数据分析人员最喜爱的数据分析产品,而且使业务分析人员在不需要掌握过多数据和IT知识的情况下,也能深入数据挖掘项目,最终保证数据挖掘项目的成功实施。根据Nucleus Research的调查结果,在使用SPSS Clementine的数据挖掘项目中,有81%的数据挖掘项目能够按时部署,有75%的数据挖掘项目符合或低于预算。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司