SPSS 相关分析在游戏中的应用

2020/10/06 09:23

SPSS:相关分析在游戏中的应用_数据分析师考试

凭借着科技的力量进入了大数据时代,收集数据的能力也大大提高,分析师每天与这些“大”数据打交道。在游戏行业,我们拥有成熟的AARRR模型,从获客、活跃、流失和留存、收入到用户传播建立一个完美的闭环。除了常规指标,在分析过程中我们还会建立很多临时指标来辅助分析,面对这么多统计的数据,我们会好奇这些指标或者变量之间是否存在某种相关性,以及相关程度如何,这就用到我们今天要分享的内容——相关分析。

      在统计学上,用相关系数来描述变量之间的关系,相关系数的符号(+/-)表明关系的方向(正相关/负相关),其值的大小表示关系的强弱程度。下图是对相关系数的一个解读。

表1 解释相关系数

相关系数的大小一般解释0.8~1.0非常强的相关0.6~0.8强相关0.4~0.6中度相关0.2~0.4弱相关0.0~0.2弱相关或无相关

      下面列举几个游戏中进行相关分析的应用场景。
1. 玩家付费能力

      评估一个玩家的付费能力与哪些因素相关,相关程度如何?

      与一个玩家的付费能力相关的因素有性别、年龄、教育程度、游戏时长、游戏频次甚至游戏中好友数。这些或多或少都与付费能力有一定的相关性。需要注意的是,像性别这样的定类变量不支持下面案例中的实现,需要点二列相关系数。
2. 游戏收入

      与游戏每天收入可能相关的因素有付费人数、活跃玩家数、付费率、ARPU、道具销售数量、道具价格和玩家总时长(日玩家总时长),哪些因素与收入相关程度密切,哪些因素相关只是偶然性呢?这些在接下来的案例会详细探讨。
3. 道具销量

      游戏中要进行相关分析的地方远不止这三个场景,理论上各个因素都可以进行相关性分析,并通过相关系数反映相关程度,还是建议不要盲目分析,在不同时间段,根据自身的分析目的进行探索式分析和验证。

      接下来我们看一个相关分析的案例,工具的选择可以根据个人喜好,虽然Excel也可以进行相关分析,但是只列出相关系数,不能进行统计显著性检验,所以推荐使用SPSS。

      首先,整理好要分析的数据,这里收集某游戏两个月内每日收入、玩家数、日付费率、付费人数、道具销售数量等数据。

      选择分析->相关->双变量,然后选择要研究的变量如下图:

      点击确定后得到分析结果如下:

相关性 日付费率付费人数道具销量玩家数收入日付费率Pearson 相关性1.976**.542**.070.961**显著性(双尾) .000.000.586.000N6262626262付费人数Pearson 相关性.976**1.558**.276*.954**显著性(双尾).000 .000.030.000N6262626262道具销量Pearson 相关性.542**.558**1.195.609**显著性(双尾).000.000 .129.000N6262626262玩家数Pearson 相关性.070.276*.1951.142显著性(双尾).586.030.129 .272N6262626262收入Pearson 相关性.961**.954**.609**.1421显著性(双尾).000.000.000.272 N6262626262**. 在置信度(双测)为 0.01 时,相关性是显著的。*. 在置信度(双测)为 0.05 时,相关性是显著的。

      结果稍微复杂了些(SPSS结果显示比较全面,有些指标不需要关心),我们只选择我们需要的数据来看,只看最后一行(蓝色部分),即收入与其他因素之间的相关性。

      从上图结果可知,收入与日付费率和付费人数相关系数分别为0.961和0.954,具有强相关性。收入与道具销量相关系数为0.609,为中度相关。显著性均为0.000远小于0.05,说明分析结果显著。而收入与玩家数(日活跃)相关系数为0.142,弱相关,从显著性检测结果0.272来看大于0.05,说明玩家数对收入相关性不显著,两者存在一定的偶然性。

      上面例子中的分析结果并不代表整个游戏行业的数据表现,本文只是传达一个分析方法,在游戏运营中多做一些探索式的相关分析,说不定就能发掘出很大的价值和规律。此外,相关分析只是分析变量之间是否相关以及相关程度如何,并不代表变量之间一定存在因果关系。就像卖冰棍和发生火灾数有很大的相关性,但他们都与温度高(夏天炎热)有关联一样。接下来的文章会讨论回归分析,用数据模型量化这种相关关系,并做一些预测。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司