传统零售业的精准营销:大数据的魅力__数据分析师考试
当前互联网公司对数据挖掘可谓赖以生存。目前几乎所有的用户体验产生的数据都可以进行数据挖掘。从传统零售企业走电子商务,到亚马逊,淘宝网的精准营销,大数据给企业带来的价值不断凸显。说到大数据,很难不提到传统的数据处理,以及大数据对于整个零售行业的影响,那么我们应该怎么理解大数据呢?
国内大数据公司信柏科技CEO柏林森指出:大数据是一个动态的洞察、清晰的预测的过程。有了洞察就可以慢慢走进预测。举例来说,对于传统的零售企业来说,他的零售模式就会遇到数据瓶颈。以前商家自己其实不知道是哪位顾客来买他的东西,就算商家有了顾客的会员卡,但是如果顾客不掏出这张卡来也是无法知道顾客是谁,即使掏出来会员卡也无法知道顾客的消费偏好及个人家庭情况等。但是有了大数据分析之后,可以对消费者进行全方位的分析,描述消费者画像,从而对其开展个性化精准营销。
那么,大数据能够让传统零售业脱困吗?业内有两种观点。有人认为大数据只是一个数据量的加大。从kb,MB,到GB和TB,计算能力的增强必然导致数据更多;另一种观点是大数据把原始数据从date变成了信息,再把信息变成了商业。
所以大数据是一个很好的工具,关键是如何是使用好这个工具,换算成数值理论的说法,就是怎么建立网络,怎样建立商业模式。举个例子,商品在超市里面卖,这个卖商品就不是一个简单的过程。超市需要根据顾客的习惯,在不同时间,不同时段推出不同的款产品,通过什么的样的方式进行销售......这些复杂的过程都需要通过大数据的分析结果进行商品配合和销售。
随着大数据商业应用的发展,越来越多的企业认识到大数据的价值,那么怎么利用创新型的大数据?一个生动的例子能够很好的诠释大数据。在抗日战争时期,军团指挥官往往能通过缴获的枪支和装备来确定敌军司令部的位置。因为缴获的装备高级,很大程度上就代表着司令部的位置。这个虽然不是大数据处理的典型例子,但是可以很好解释如何利用创新型的大数据技术。
其次,还需要大数据团队的支持。一个企业首先要有数据驱动的意识,作为企业的带头人应该首先做一个决策,但是决策制定后,需要一个团队进行支持。因为很多大数据的应用都是在执行层面,如何对数据进行整合,需要各个系统的数据模型。
总之,传统零售业向电子商务大数据转变时,首先要进行决策分析、数据分析,数据整合,团队执行,这样才是一个理想的大数据变革。