1、大数据挖掘可以使混乱且无规则的数据变得清晰且具有高可用性
大数据具有两个典型特征,一个是大量数据,另一个是复杂的计算。与传统数据库相比,大数据的结构化程度,可用性,数据提取和数据清理都是一项繁重的工作。
典型的典型生产和销售企业的业务系统数据是隔离,拆分,销售,生产,财务,客户等的,不同方面实际上是为自己的业务目标和输出构建自己的IT系统甚至被外包给不同的IT集成商或软件开发人员,因此系统相对独立。
2、让数据与数据之间的关系,这种关系可能产生化学反应
啤酒和尿布,口香糖和避孕套的著名例子可以发现典型数据之间的隐含关系。通过对消费者行为的数据进行建模和分析,可以发现理论上这两个原本不相关的事物,当用户购买某商品时产生了关联,针对此发现优化货架商品可以增加销售额。
3、监视数据生成过程以发现异常,并作出预警和错误纠正
通过时间对系统生成的数据进行建模,可以记录平均值以及每个时间点和时间段的上下间隔。如果某个节点发生异常情况,则系统可以快速找到问题并进行预警和故障排除。当然,这只是技术系统的价值。
在业务系统中,这种数据异常会给您业务状况的警告,帮助您比较历史时间维度,确定事物发生变化的原因,并为您提供必要的时间,数据和相关信息参考用于决策分析。
4、通过数据挖掘建立知识模型以提供决策支持信息
IT系统正在发挥更大的价值,因为它可以帮助您通过信息集成来提供决策参考信息。过去,有一个术语称为KDD(知识发现)。随着互联网信息内容的丰富和以及各大例如亿信华辰BI软件等公司的发展,网络信息的价值和有效性也在增加。
关于大数据挖掘都有哪些方面的应用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。