数据分析的五大乱象有哪些?

环球青藤 2020/10/28 02:20

乱象一:数据本身造假

最常见也是最初级的耍流氓行为就是数据造假。

比如,为了让广告主对投放工作表示满意,或者说服广告主继续投放广告,投放方会在结案报告里对数据做一些处理,从曝光量到点击量到点击率都做一遍美化,让广告主觉得这钱花得挺值,甚至愿意继续投。

乱象二:指标定义不一

指标是说明总体数量特征的概念。很多公司都有自己的投放KPI指标体系,简单来说就是通过几个关键指标来衡量公司广告投放情况的好坏,比如点击率、曝光量、转化率、下载量、ROI 等,都是信息流广告的考核指标之一。

通常情况下,指标需要在一定的前提条件下进行汇总计算才能得出,诸如时间、地点、范围等都可以作为指标统计的前提条件,也就是我们常说的统计口径与范围。

乱象三:隐藏关键信息

这种情况通常出现在别人想要说服你接受某个指标的时候。

比如公司管理层要给广告投放定一个KPI指标,号称Bench marking (标杆管理)的方法开始被用起来。

Bench marking(标杆管理),又称“基准管理”,其本质是不断寻找最佳实践,以此为基准不断地“测量分析与持续改进”。

乱象四:乱搞因果关系

单纯认为最终的购买决策是由问价直接导致的是有问题的,归根结底,价格只是客户满意的一个部分,还有更多的的原因导致最后的成交,我们需要了解影响目标客户做决策的各个相关因素,针对性的去做创意。

乱象五:以局部论整体

我们说因变量的影响因素其实有很多,但分析师往往只看到其中一两个,就草率的认为因变量的变化就是某个或者某几个变量的变化造成的,通常来说,由这个做法得出的结论都是片面的。

比如在信息流广告投放中,经常会有朋友吐槽XX渠道效果好差,不如XX平台,刚上线就有咨询。撇除平台本身的一些差别,我们从广告投放规律来看这个问题,你会发现,效果好坏的评估需要考虑多个因素。

关于数据分析的五大乱象有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司