平台层面的保障
传统的权限控制通常是以系统功能为中心来进行设计,通过控制用户对功能的访问来达到权限控制的目的。这种控制方式在大数据中心已经捉襟见肘,比如对于同一个数据分析功能,不同产品的分析人员只能操作本产品的数据;
数据层面的保障
大数据中心面向公司所有的产品负责提供数据处理的能力,那么业务数据每天都在平台上流转,如何合理控制数据平台工程师对业务数据的访问;
风险预防和审计
产品的业务形态决定了其系统设计,在其不断演进过程中,数据模型也在不断演进,必然会持续产生一些脏数据,要保证数据的质量,在数据治理环节会加入更多的人工参与,也增加数据泄漏的风险;
流程和制度
哪些数据可以公开、公开的范围是多广?数据可以给哪些人使用?某个业务部门想使用另外一个业务部门的数据,应该走什么样的流程?处理这些事情在很长一段时间都是见招拆招,看起来很灵活其实毫无规则可言。
关于大数据平台构建常见的问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。