数据分析有哪些因素要注意?

环球青藤 2020/11/17 09:58

获得合适的数据专家

培养合适的人才至关重要。(大数据不仅仅涉及技术和平台。)企业需要对合适的人员进行投资,这些人员应清楚了解企业的业务目标并相应地利用大数据。需要在技术上和分析上都配备有能力的正确的人,他们能够理解和理解数据分析所引发的相互关系和趋势。

定义事项

大数据确实非常大,可以通过多种方式进行分析。但是需要谨记模糊的数据可能成为大数据计划的巨大杀手。重要的是要绝对清晰地了解目标,以及需要以何种方式分析哪些数据成分,以获得什么样的见解。还原主义—将复杂问题分解为各个组成部分的实践是最佳实践之一,并且只有在明确目标的情况下才能实施,该目标将定义流程。

通过测试优化重点

测试是IT领导者经常忽略的因素。每当实施新技术时,测试并进一步调整过程以获取所需的内容就很重要。在某些行业中,这称为大型测试。只有通过培养实验文化才能获得最佳的关注。鲜为人知的事实是,数据驱动的实验使人们能够找到新的数据解释方式和创新的基于数据的产品创建方式。

获取和应用可行的见解

尽管“可行的见解”是一个经常被重复使用的术语,但在实施级别仍然被忽略。首席信息官需要从大数据分析中提取可操作的信息。向决策者提供经过过滤的相关信息在行业中具有极其重要的意义。此外,管理人员需要理解,更改或创建包含从大数据中获得的见解的流程。

评估和完善

行业一旦形成便倾向于遵循流程或政策,但是,在涉及大数据计划时,需要不断评估和完善以实现任何大目标。企业领导者,通常是CIO,需要通过提供实时反馈的正确监控解决方案进行评估,并通过更改和改进做出响应。尽管这似乎是一个耗时的过程,但从长远来看,它实际上是节省时间的过程。

关于数据分析有哪些因素要注意,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司