一、数据仓库不需要大数据
数据仓库是一种架构,而大数据纯粹是一种技术。因此,人们不能在技术上取代其他人。像大数据这样的技术可以存储和管理大量数据,以合理的低成本将它们用于不同的大数据解决方案。
二、大数据技术将消除数据集成的必要性
大数据技术使用“读取模式”方法来处理信息。这使组织可以使用多个数据模型来读取相同的源。人们普遍认为,它可以灵活地允许终用户确定如何按需解释数据资产。此外,假设大数据提供针对各个用户定制的数据访问。
三、大数据总是质量数据
大数据并不一定意味着它包含干净和高质量的数据。相反,在大多数情况下,大数据包括数据质量错误。此外,为了从收集的大数据中利用更好和正确的见解,有必要对它们进行清理。因此,错误的假设是不需要数据清理,收集或分析大数据。
四、大数据只用于分析
您将从各种来源获得至少12种不同的大数据定义。在某个地方,它被定义为5V,在某个地方作为海量数据集,在某个地方它与分析相交。因此,每个人都有不同的方法来定义。
此外,大数据是一种除了数据分析之外还具有许多功能的技术。因此,大数据事实在许多场景中,它用于分析复杂的用例模式,以获得更好的洞察力来解决问题。
五、Hadoop是内存技术的替代品
Hadoop是受欢迎的大数据工具。内存技术与Hadoop底层架构集成,有助于实时集成来自各种源的大量数据。因此,内存是Hadoop的理想平台及其技术基础。
关于如何正确认识大数据技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。