大数据技术架构都有哪些变化?

环球青藤 2020/11/25 07:56

1.从本地数据平台到基于云的数据平台

云可能是一种全新的数据架构方法的具颠覆性的推动力,因为它为公司提供了一种快速扩展人工智能工具和功能以获取竞争优势的方法。

2.从批处理到实时数据处理

实时数据通信和流媒体功能的成本已大大降低,这为其主流使用铺平了道路。这些技术实现了一系列新的业务应用:例如,运输公司可以在出租车到达时向客户提供精确到秒的抵达时间预测;保险公司可以分析来自智能设备的实时行为数据,从而将费率客制化;而且制造商可以根据实时的传感器数据来预测基础设施方面的各种问题。

3.从预集成的商业解决方案到模块化的同类佳平台

为了扩展应用程序的规模,公司往往需要冲破大型解决方案供应商所提供的遗留数据生态系统的限制。现在,许多公司正朝着高度模块化的数据架构发展,这种架构使用了佳的,经常使用的开源组件,这些组件可以根据需要被新技术替换而不会影响数据架构的其他部分。

4.从点对点到脱离数据访问

人们可以通过API来揭露数据,这样可以确保直接查看和修改数据的做法是受限且安全的,同时还可以让人们更快地访问常见的数据集。这使得数据可以在团队之间轻松得到重用(reused),从而加速访问并实现分析团队之间的无缝协作,从而可以更高效地开发各种人工智能用例。

关于大数据技术架构都有哪些变化,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司