大数据分析
物联网传感器不断从大量连接的各种各样的设备接收数据。随着连接设备数量的增加,物联网系统需要可扩展以适应数据流入。分析系统处理这些数据并提供有价值的分析报告,这些报告将给企业带来竞争优势。
由于数据是根据其类型进行挖掘的,因此必须对数据进行分类以充分利用数据。根据所讨论的数据类型,可以完成不同类型的分析。
流分析将来自传感器的未分类流数据与来自研究的存储数据结合在一起,以找到熟悉的模式。通过这种方法进行的实时分析可以在车队跟踪和银行交易等应用中提供帮助。
地理空间分析
另一类大数据分析方法是基于地理空间,其中IoT传感器数据和传感器的物理位置的组合可以为预测分析提供整体视角。物联网世界中的对象数量众多,其通过无线网络发送数据的能力有助于获得详细的数据转储,这些数据转储可用于促进洞察。
挑战
目前,我们处于大多数企业都必须捕获、分析和报告IoT数据的阶段。但是,由于这些技术仍处于发展阶段,因此这些组织面临许多挑战。例如:
集成
由于物联网数据是通过多种渠道以不同的格式接收的,因此收集和集成它具有挑战性。分析系统需要确保接收到的数据具有足够的可操作性以确定见解的格式。文本挖掘和机器学习技术通常用于从传感器提取文本数据。但是,提取图像、视频等非文本格式的数据无法快速完成。
隐私
物联网系统通常具有敏感信息,需要加以保护以免受外部干扰。不断涌入的数据难以保护数据的每个部分并进行分析。这些系统由于容量有限而依赖于第三方基础结构,这将增加安全风险。因此,采用了诸如数据匿名性和加密之类的预防措施来加强数据安全性。
关于大数据与物联网有什么关联,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。