数据存储问题:随着技术不断发展,数据量从TB上升至PB,EB量级,如果还用传统的数据存储方式,必将给大数据分析造成诸多不便,这就需要借助数据的动态处理技术,即随着数据的规律性变更和显示需求,对数据进行非定期的处理。同时,数量极大的数据不能直接使用传统的结构化数据库进行存储,人们需要探索一种适合大数据的数据储存模式,也是当下应该着力解决的一大难题。
分析资源调度问题:大数据产生的时间点,数据量都是很难计算的,这就是大数据的一大特点,不确定性。所以我们需要确立一种动态响应机制,对有限的计算、存储资源进行合理的配置及调度。另外,如何以最小的成本获得最理想的分析结果也是一个需要考虑的问题。
专业的分析工具:在发展数据分析技术的同时,传统的软件工具不再适用。目前人类科技尚不成熟,距离开发出能够满足大数据分析需求的通用软件还有一定距离。如若不能对这些问题做出处理,在不久的将来大数据的发展就会进入瓶颈,甚至有可能出现一段时间的滞留期,难以持续起到促进经济发展的作用。
关于大数据分析目前存在哪些问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。