大数据常用处理框架有哪些?

环球青藤 2020/12/24 02:36

1、批处理

批处理是大数据处理傍边的遍及需求,批处理主要操作大容量静态数据集,并在核算进程完成后返回成果。鉴于这样的处理模式,批处理有个明显的缺点,便是面对大规模的数据,在核算处理的功率上,不尽如人意。

现在来说,批处理在应对很多持久数据方面的体现极为出色,因而经常被用于对历史数据进行剖析。

2、流处理

批处理之后呈现的另一种遍及需求,便是流处理,针对实时进入体系的数据进行核算操作,处理成果马上可用,并会跟着新数据的抵达继续更新。

在实时性上,流处理体现优异,但是流处理同一时间只能处理一条(真正的流处理)或很少数(微批处理,Micro-batch Processing)数据,不同记录间只维持最少数的状况,对硬件的要求也要更高。

3、批处理+流处理

在实践的使用傍边,批处理和流处理一起存在的场景也很多,混合处理框架就旨在处理这类问题。供给一种数据处理的通用处理方案,不仅可以供给处理数据所需的办法,一起供给自己的集成项、库、东西,可满足图形剖析、机器学习、交互式查询等多种场景。

关于大数据常用处理框架有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司