实际上,除了Google之外,在其他社交媒体上发布的微博客或搜索历史记录的一开始,也可能是潜在疾病暴发的警告信号。有很多方法可以从社交媒体上收集帖子,包括使用那些媒体平台本身提供的公共API,通过编程自行构建搜寻器的方法,也可以不必理会任何编码或技术技能通过使用自动网络爬虫。
通过从微博客中过滤掉关键字,数据科学家可以使用LASSO算法基于关键字的特征建立预测性流感模型。另外,在疾病传播过程中,长时间接触病原体会增加感染机会。许多公共卫生调查表明,某些疾病可能与基因类型,生活方式,身体症状有关。通过在潜伏期设计个性化和定制的治疗方法,可以探索遗传信息和病史记录,以预防潜在疾病。
例如,已开发出Mayo System,用作数据科学家的数据分析平台,用于存储和分析来自患者的历史记录数据,并为有需要的人定制个性化的治疗计划。通过分析身体症状和其他历史记录,医务人员可以从数据分析系统中找到匹配的诊断信息,然后有效地提出指导性的治疗计划。
关于大数据在医疗工作中有什么作用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。