1.加速产品立异
客户与工业企业之间的交互和买卖行为将发生大量数据,挖掘和剖析这些客户动态数据,可以帮助客户参加到产品的需求剖析和产品设计等立异活动中,为产品立异作出贡献。
2.产品毛病确诊与猜测
这可以被用于产品售后服务与产品改善。无所不在的传感器、互联网技术的引入使得产品毛病实时确诊变为实际,大数据使用、建模与仿真技术则使得猜测动态性成为可能。
3.生产线的大数据使用
现代化工业制作生产线装置有数以千计的小型传感器,来勘探温度、压力、热能、振荡和噪声。由于每隔几秒就收集一次数据,使用这些数据可以完成许多方式的剖析,包括设备确诊、用电量剖析、能耗剖析、质量事故剖析(包括违反生产规则、零部件毛病)等。
4.工业供应链剖析和优化
当时,大数据剖析已经是许多电子商务企业提升供应链竞争力的重要手法。例如,电子商务企业京东商城,经过大数据提早剖析和猜测各地产品需求量,然后提高配送和仓储的效能,保证了次日货到的客户体会。
5.产品出售猜测与需求管理
经过大数据来剖析当时需求改变和组合方式。大数据是一个很好的出售剖析东西,经过历史数据的多维度组合,可以看出区域性需求占比和改变、产品品类的商场受欢迎程度以及最常见的组合方式、消费者的层次等,以此来调整产品策略和铺货策略。
6.生产计划与排程
制作业面临多品种小批量的生产模式,数据的精细化自动及时便利的收集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,关于需求快速呼应的APS来说,是一个巨大的挑战。
关于工业大数据有哪些应用场景,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。