大数据技术有哪些应用表现形式?

环球青藤 2021/01/18 02:46

1、数据剖析及发掘

数据计算及剖析主要是根据存储的海量数据进行普通的剖析和分类汇总,以满足大多数常见的剖析需求。数据发掘一般没有预先设定好的主题,主要是在现有数据上面进行根据各种算法的计算,然后起到预测的效果,完成高档其他数据剖析的需求,丰富的历史数据是数据发掘的先决条件。

2、机器学习

监督式学习算法是从带标签(标注)的训练样本中树立的训练样本中树立形式,并依此推测新的数据标签的算法。比如回归、神经网络、决策树、支持向量机、贝叶斯、随机森林。无监督式学习算法是在学习时并不知道其分类成果,意图是去对原始材料进行分类,以便了解材料内部结构的算法。比如聚类、主成分剖析、线性判别剖析降维。

3、数据仓库

从企业视点来说,无论是数据库、数据仓库还是大数据都是处理不同需求、处理不同级别数据量的技能,它们之间并无冲突。针对不同需求和现状进行技能选择,各种技能相互弥补、相互协作。现在阶段关于大部分企业来说,想要展开一个全新的大数据项目似乎无从下手。

4、数据安全

大数据蕴藏着价值信息,但数据安全面临着严峻挑战。一方面,大数据自身的安全防护存在漏洞。虽然云计算对大数据供给了便当,但对大数据的安全操控力度不够,API拜访权限操控以及密钥出产,存储和办理方面的缺乏都可能造成数据走漏。另一方面,在用数据发掘和数据剖析等大数据技能获取价值信息的同时,攻击者也在利用这些大数据技能进行攻击。

关于大数据技术有哪些应用表现形式,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

免费直播

    精选课程 更多

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司