1、从过时的事务战略开端
世界瞬息万变,没有发展到适用于第四次工业革命的商业战略就不会具有吸引力。您的数据战略应支撑适用于当今世界的事务体系。在过时的事务战略方面,投入精力和资产来搜集和分析数据似乎很糟糕。您不只不能抵达应该抵达的当地,而且会浪费时刻和资源来实现方针。
2、随意搜集数据
从一开端,可能很诱人直接反弹并搜集整个点上的数据,而没有恰当的思路来了解这将如何协助您的事务。原始信息一般对大多数事务用户而言什么也没说,而很多信息泛滥而树立巨大的数据库则没有任何特定的优点或有用的意图,除非占用您的时刻和资产。
3、投资回报率有限
为了有效地处理客户数据的重要事务资源,安排需求技术来简化数据搜集,随着信息量的动摇而主动扩展并为包含人工智能在内的中心事务提供支撑,一起还要考虑到自界说。安排犯下的一个典型过错是,从这些进步中寻求短期的投资回报,而不是专心于其为企业带来的长期价值和优势。
4、忽略数据质量
下一个最重要的视点是确保您拥有出色的数据。您可能有很多来自正确来历并契合您方针的数据;在任何情况下,这都不会破坏对数据的准确性和可猜测性的要求。巨大的安排实际上仅仅招聘人员来整理很多数据,以确保一致性和统一性。
5、隐私和法令问题
在任何数据项意图开端,都应树立恰当的数据管理。应界说对道德运用数据以及数据运用的法令和隐私问题的考虑。客户的信任至关重要。客户应该坚信您将安全地使用他们的信息,而且他们会从答应您使用他们的信息中取得实在的价值。
6、缺少专门的商业智能团队
在有效地搜集数据之后,许多安排以为很难从数据中取得价值和洞察力,主要是因为他们没有投入满足的资源来树立专门的BI组来协助他们搜集、分析和共享数据,以及推动进步的方法。
关于大数据分析要注意哪些问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。