1.数据规划
数据规划是指收集整理业务部门数据需求,搭建完整的数据指标体系。
这里有两个重要概念:指标和维度!指标(index),也有称度量(measure)。指标用来衡量具体的运营效果,比如UV、DAU、销售金额、转化率等等。指标的选择来源于具体的业务需求,从需求中归纳事件,从事件对应指标。维度是用来对指标进行细分的属性,比如广告来源、浏览器类型、访问地区等等。选择维度的原则是:记录那些对指标可能产生影响的维度。
2.数据采集
数据采集是指采集业务数据,向业务部门提供数据报表或者数据看板。
巧妇难为无米之炊,数据采集的重要性不言而喻。目前有三种常见的数据采集方案,分别是埋点、可视化埋点和无埋点。相比于埋点方案,无埋点成本低、速度快,不会发生错埋、漏埋情况。无埋点正在成为市场的新宠儿,越来越多的企业采用了GrowingIO的无埋点方案。在无埋点情景下,数据运营可以摆脱埋点需求的桎梏,将更多时间放在业务分析上。
3.数据分析
数据分析是指通过数据挖掘、数据模型等方式,深入分析业务数据;提供数据分析报告,定位问题,并且提出解决方案。
数据分析是数据运营的重点工作,数据规划和数据采集都是为了数据分析服务的。我们的最终目的是通过数据分析的方法定位问题,提出解决方案,促进业务增长。
关于数据运营是做什么的,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。