1.基于大量数据
不是说无法发掘小数据量。实际上,大多数数据发掘算法都可以在较小的数据量上运行并取得成果。可是,一方面,过小的数据量可以经过手动分析来总结,另一方面,小数据量通常不能反映实际国际的一般特征。
2.非普通性
所谓非普通的意思是指所发掘的常识是不简单的。必定不能与闻名体育评论员所说的类似:“经过我的核算,直到比赛完毕我才发现了一个风趣的现象。本届国际杯的进球数和失球数都是相同的。十分巧合!”这种常识。这好像没有必要,可是许多不了解事务常识的数据发掘新手经常会犯此错误。
3.隐含性
数据发掘是发现数据深处的常识,而不是直接出现在数据表面的信息。常用的BI工具完全可以让用户找到此信息。
4.新奇性
发掘的常识曾经应该是未知的,不然仅是为了验证事务专家的经验。只有新常识才能帮助公司取得进一步的洞察力。
5.价值性
发掘的成果必须为企业带来直接或间接的利益。有人说数据发掘仅仅“杀龙技术”。它看起来牛气哄哄,但没有用。这仅仅一个错误的主意。不可否认的是,在某些数据发掘项目中,因为缺少明确的事务方针,或许因为数据质量缺乏,或许因为人们抵抗不断改变的事务流程,又或许因为发掘人员缺少经验,都会导致成果欠安乃至底子没有作用。
关于数据挖掘技术具有哪些特点,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。