1、准确性
这是最根本的一条原则。这个准确有二个层面的意思,一个是数据指标在技术实现过程中,是准确的,不会出现代码逻辑写错,源数据取错。二个统计源数据的源头的数据是对的,如果统计数据指标的基础数据都是错了,那就更666了。一个公司数据收集与记录的准确、完整也一定是一个持续迭代的工程,当然这属于哪一个话题,有空再论。
2、有效性
数据指标的能真实反映要能衡量相对的业务场景商业目标,例如:要针对衡量一个网站流量质量设计一个指标,使用UV来衡量是错误的。使用跳出率来衡量,有一定的有效性,但还是不够有效;使用转化率也许才是比较合适的(不同公司所要追求的商业目标不一样,所以设计的数据指标是不一样的),用最近期望用户完成的商业动作访问数/进来的访客数。
3、周期性
数据指标需要定期去复盘。像KPI的指标定义,例如:销售额可能根据当前商业的目标不同,计算口径可能会发生很大的变化。同时,对各个数据指标也要定期进行复盘,是否还可以继续衡量,数据指标还是否有意义。随时KPI指标的变化,往往很多指标的口径也要变更,数据开发最怕就是这个,口径变换要重刷历史。
4、可实现性
在实际企业中,可能受限数据的完整性因素,很多指标没有办法计算得到。例如:公司的市场占有率往往是很难统计,因为整个市场份额这个数据很难获取。电商中每个订单的成本的计算也很难,广告费用、仓储、人员工资、仓储、物流配送等。所以在数据指标的可实现性上往往需要先实现简单的,再根据数据应用深入,数据团队技术强大不断再完善复杂的指标。
关于好的数据指标具备哪些特征,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。