1. Excel
提到Excel大家都不陌生,很多小白非常喜欢用Excel来进行数据分析。即使是专业的分析人员,他们也会使用Excel处理聚合数据。
2. SQL语言
SQL(结构化查询语言)是一种用于处理和检索关系数据库中存储的数据的计算机语言,是关系数据库管理系统的标准语言。它具备很多优点,例如:
(1)速度快。输入你要进行的操作,仅需几秒,操作就能完成。
(2)不需要你具备很强的编程能力。
(3)语言简单易学。
3. 可视化工具
将数据可视化可以让人更加理解数据。人类都是视觉动物,图形往往比密密麻麻的文字更易于理解。
4. Python
Tableau、FineBI这一类的可视化工具,的确可以自动生成报告。但是,如果想要进行更深入的探索,你需要学习Python来进行数据挖掘。
Python是一种面向对象的高级编程语言,主要用于Web以及应用程序的开发。Python拥有图形和可视化工具、以及扩展的分析工具包,能够更好地帮助我们进行数据分析。
5. SAS
SAS(统计分析软件)是一套模块化的大型集成应用软件系统。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等等。因此,SAS能够对数据进行深层次的挖掘和分析。
6. Alteryx
Alteryx是一种自助服务分析工具。用户可以快速混合和准备数据,即便没有任何编程能力的人,也可以在Alteryx中构建数据工作流。同时,Alteryx的运行速度也非常快。使用拖放式工作流程和数据清理技术,仅需几分钟,你就能得到输出结果。
关于如何成为合格的数据分析师,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。