大数据和数据挖掘的战略意义是相同的——都是通过对数据进行深入分析研究,寻找发现更有价值的信息。从技术层面看,大数据的快速崛起和云计算、人工智能、机器学习、数据挖掘有着密不可分的联系,可以说是站在巨人的肩膀上快速成长。
与此同时,两者的差异也相对明显,虽然大数据的战略意义是对含有意义的数据进行专业化处理,但究其本质,大数据仍然属于一种海量的数据资产,是进行分析的基础;而数据挖掘则是开发这些海量数据背后的信息的一个过程,是一种决策支持技术。两者是相辅相成的。
最后进行一个简单的总结,大数据是资产,是数据信息,而数据挖掘是一种提供结果的技术。但是两者的最终目标都是希望能够从海量的复杂数据中找到有意义的信息,帮助决策者调整市场策略,减少风险,作出正确的决策。
现在诞生的众多BI产品,诸如Tableau、FineBI、PowerBI、DataFocus等,其主旨都逃不过大数据和数据挖掘。这些BI产品,如DataFocus等,能够将大数据和数据挖掘完美融合,利用其独特的算法帮助简化数据分析的难度,同时以更美化的形式展示数据分析结果,方便企业高层随时查看公司数据变动情况,及时制定决策。
关于大数据和数据挖掘有什么关系,环球青藤小编就和您分享到这了。如若您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。倘若您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。