问答详情

工业大数据有什么特征?

1034次观看
标签: 工业大数据 工业大数据特征
老师回答

数据容量大:数据的大小决定所考虑的数据的价值和潜在的信息。工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。

多样:指数据类型的多样性和来源广泛。工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节,并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。

快速:指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求分析时限达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。

价值密度低:工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率及促进个性化定制、服务化转型等智能制造新模式变革。

时序性:工业大数据具有较强的时序性,如订单、设备状态数据等。

免费直播

    精选课程
    相关推荐
    大数据与数据分析师有哪些区别?
    宋老师 大数据工程师

    首先,大数据分析师是大数据时代背景下产生的一种新型技术岗位,与传统数据分析师的区别主要体现在三个方面,其一是技术体系结构不同;其二是岗位任务目的存在一定的区别;其三是工作场景具有一定的区别。

    ​对于大数据分析师来说,要具备更加全面的知识结构,涉及到大数据平台知识、算法设计知识、程序设计知识和具体的行业知识等,所以相对于传统的数据分析师来说,大数据分析师的从业门槛有了一定程度的提升。从目前行业领域的人才招聘情况来看,大数据分析岗位往往需要具有较高的学历要求,研究生往往更愿意从事相关岗位。

    大数据分析的目的与传统的数据分析目的也存在一定的区别,主要体现在两个方面,其一是大数据分析比较注重数据的价值化,简单的说,大数据分析的结果会提升数据的价值,而传统数据分析的目的往往是以应用为导向的。另一个区别在于,大数据分析的结果往往是为了提供给智能体使用,比如人工智能领域的算法训练、验证等过程都需要大数据分析的参与。

    在工作场景上,大数据分析与传统的数据分析也存在一定的区别,大数据分析往往需要借助于大数据平台进行,比如Hadoop、Spark,以及各种商用的大数据平台等,但是传统的数据分析往往会基于Excel或者是传统数据库进行。相对于传统数据分析工具来说,大数据分析的工具往往更加丰富,复杂程度也有明显的提升。

    大数据在生活中有哪些应用?
    黄老师 大数据工程师

    1.了解和定位客户

    这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。

    2.了解和优化业务流程

    大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。

    3.提供个性化服务

    大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。

    4.改善医疗保健和公共卫生

    大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人。

    5.提高体育运动技能

    如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司