问答详情

数据分析的过程是怎样的?

1305次观看
标签: 数据分析 数据分析过程
老师回答

1、数据的需求

要进行数据分析,数据是必须的,它是根据指导分析的人员或客户的要求指定的。将在其上收集数据的实体的一般类型称为实验单位(例如,个体与群体)。可以指定和获得有关人口的特定变量。

2、数据的收集

数据的收集来源方式很多,它是是从各种来源收集的。数据分析师可以将需求传达给数据的管理人员,如组织内的信息技术人员。还可以从环境中的传感器(例如监控,卫星等)收集数据。

3、数据的处理

数据的处理是用于将原始信息转换为可操作的情报或知识的情报周期的各个阶段在概念上类似于数据分析中的各个阶段。

4、数据的清理

数据一旦经过组织和处理,数据很有可能不完整,可能会包含重复项或包含错误。由于数据输入和存储方式存在问题,因此需要清理数据。数据清理是防止和纠正这些错误的过程。

5、数据的展示

一旦分析了数据,就可以以多种格式将其报告给分析用户,以支持他们的要求。用户可能会有反馈,这会导致其他分析。因此,许多分析周期都是迭代的。

免费直播

    相关推荐
    数据分析师应该具备的素质有哪些?
    刘老师 数据分析师

    1、态度严谨负责

    严谨负责是数据分析师的必备素质之一,只有奔着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结的问题。

    2、好奇心强烈

    好奇心热皆有之,但是作为数据分析师,这份好奇心就应该更加强烈,要积极主动地发现挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果是不预期的那样等等,这一系列问题都要在进行分析时提出来,并且通过通过数据分析给自己一个满意的答案。

    3、逻辑思维清晰

    除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。

    通常从事数据分析时所面对的商业问题较为复杂,要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要数据分析师对事实的足够了解,同时也是需要真正理清问题的整体以及局部的结构进而理清结构中相互的逻辑关系。

    4、擅长模仿

    在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速的成长,因此,模仿是快速提高学习成果的有效方法。模仿主要是参考他人优秀的思路和方法,成功的模仿需要领会他人方法的精髓,理解其成分析原理。

    5、勇于创新

    通过模仿可以借鉴他人的成功经验,但模仿时间不宜太长,每次模仿后都要进行总结,提升可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断创新,才能提高自己的分析水平。

    开源数据挖掘工具有哪些?
    刘老师 数据分析师

    1、RapidMiner

    该工具是用Java语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。

    另外,除了数据挖掘,RapidMiner还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自WEKA(一种智能分析环境)和R 脚本的学习方案、模型和算法。

    RapidMiner分布在AGPL开源许可下,可以从SourceForge上下载。SourceForge是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括维基百科使用的MediaWiki。

    2、WEKA

    WEKA原生的非Java版本主要是为了分析农业领域数据而开发的。该工具基于Java版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与RapidMiner相比优势在于,它在GNU通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。

    WEKA支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。

    添加序列建模后,WEKA将会变得更强大,但目前不包括在内。

    3、R-Programming

    如果我告诉你R项目,一个GNU项目,是由R(R-programming简称,以下统称R)自身编写的,你会怎么想它主要是由C语言和FORTRAN语言编写的,并且很多模块都是由R编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了R的知名度。

    除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司