问答详情

数据分析要重点学什么?

993次观看
标签: 数据分析 数据分析重点
老师回答

首先说的是数据挖掘,所谓数据挖掘就是去寻找数据、挖掘数据,从大量的数据中学会寻找出自己需要的数据,这样才能够为数据分析做好前提准备。

然后说数据可视化,在前面我们提到了Python和r语言,掌握了其中的基础,我们还需要学习数据可视化这个技能,数据可视化就是将数据分析结果用很简单的方式呈现出来,数据可视化的目的就是能够让客户或者普通人能够看懂这数据的分析结果。

接着说计算机语言,数据分析使用的语言只有两种,就是Python和R语言,并非是C语言或者Java语言。Python的基本语法一定要掌握好,学会使用Python爬虫获得数据,这样能够做好数据挖掘。

最后要说的就是统计学以及sql,这两个属于数据分析师的必备技能。任何一个数据分析师必须要掌握这两个技能,而统计学是往业务方面发展的,sql是往技术方面发展的,这两个技能可以根据自己想要发展的方向进行重点学习,当然,这些技能都是要学扎实的。

免费直播

    相关推荐
    最常用的四种大数据分析方法有哪些?
    刘老师 数据分析师

    1.描述型分析:发生了什么?

    这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

    例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

    2.诊断型分析:为什么会发生?

    描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

    良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

    3.预测型分析:可能发生什么?

    预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

    预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

    在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

    4.指令型分析:需要做什么?

    数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

    例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司