问答详情

学大数据的就业方向是什么?

3967次观看
标签: 大数据 大数据就业方向
老师回答

1. Hadoop大数据开发方向

市场需求旺盛,大数据培训的主体,目前IT培训机构的重点。

对应岗位:大数据开发工程师、爬虫工程师、数据分析师等。

2. 数据挖掘、数据分析&机器学习方向

学习起点高、难度大,市面上只有很少的培训机构在做。

对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等。

3. 大数据运维&云计算方向

市场需求中等,更偏向于Linux、云计算学科。

对应岗位:大数据运维工程师。

免费直播

    精选课程
    相关推荐
    大数据预测分析方法有哪些?
    刘老师 大数据工程师

    1、可视化分析

    大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

    2、数据挖掘算法

    大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

    3、预测性分析能力

    大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

    4、数据质量和数据管理

    大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

    大数据岗位方向都有哪些?
    刘老师 大数据工程师

    1、大数据开发工程师

    开发,建设,测试和维护架构;负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。

    2、数据分析师

    收集,处理和执行统计数据分析;运用工具,提取、分析、呈现数据,实现数据的商业意义,需要业务理解和工具应用能力。

    3、数据挖掘工程师

    数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。

    4、数据架构师

    需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力。

    5、数据库开发

    设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。

    6、数据库管理

    数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等。

    7、数据科学家

    数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换。

    8、数据产品经理

    把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司