问答详情

如何搭建数据分析思路?

795次观看
标签: 搭建思路 数据分析思路
老师回答

1.确认分析点

为什么要做这个呢?往往数据需要分析的点不是分析师自己发起,而是业务发起,但他们往往不能第一时间描述清楚自己的问题和真实需求,所以需要分析师协助其更好的理解自己真实的诉求,清楚的解读这个问题到底是什么。

2.思路梳理

将问题进行切割梳理,为后面有条理有目的的深入看数据做准备,每条思路都存在一种基于业务认知的预设假设,而后再利用数据去判断假设是否成立。

3.收集信息

基于步骤2梳理的思路,收集相关信息,主要包括业务在什么时间点做过什么调整决策、和这个主题相关的内部外部信息等等。

4.深入分析

基于梳理的思路及掌握的信息,结合数据逐个去验证每个假设对结果的影响。看数据时可能会产生新的思路,可返回完善思路。

免费直播

    相关推荐
    如何高效的运用网站分析工具?
    刘老师 数据分析师

    1、工具使用第一重:仅仅是页面流数据

    很多人把工具生成的代码往网站页面上一贴,认为网站的跟踪代码配置就基本完成了。但事情并没有那么简单,分析系统中生成的跟踪代码只能简单的跟踪页面流的数据,比如访问数、浏览量、流量来源等等,用户与网站的交互行为比如表单提交、订单达成是无法跟踪得到的。

    网站的跟踪代码应该要根据具体的网站业务需求来配置跟踪方案。在添加跟踪代码前需要相关的业务人员聚在一起讨论把数据跟踪需求整理出来,根据需求形成一个完成的跟踪方案,从而生成相应的跟踪代码并添加到网站中。

    很多网站甚至是一部分电商网站都只是做到了这一步,但其实这远远没有把网站跟踪系统的功能发挥出来。

    因为受限跟踪配置的内容,系统只能收集到页面流的数据,因此用户也只能简单地查看网站的访问数、页面的浏览量以及流量来源的相关数据,但用户来到了网站有没有一些非浏览量的交互行为,是否有产生订单或产生了哪些产品的订单,无从得知。因此也没有明确的指标用于指导网站优化和外部推广(仅有的跳出率是不够的)。

    2、工具使用第二重:配置了目标或电子商务跟踪

    有部分用户在页面流数据跟踪的基础上会增加目标与电子商务数据的跟踪配置,这就进入我们所说的“网站分析第二重”。

    目标与电子商务数据是衡量网站绩效的重要指标。对于会员制的电商网站来说,一个非常重要的目标就是会员数据的增加,而电子商务销售则是网站的终极目标。对这两块数据进行跟踪,我们就可以很好地衡量网站与及流量来源的转化情况。

    把目标与电子商务的数据跟踪起来后,我们就可以把转化的数据与流量来源及页面浏览行为相关联,我们就可以很好地分析网站流量来源与页面浏览行为的转化情况。从而知道从哪些流量来源过来的流量质量最高,哪些产品或页面的说服力更强可以吸引用户完成订单转化,这样我们就可以有针对性地增加那些转化率高的流量来源的流量,并对一些转化偏低的产品或页面进行优化。

    3、工具使用第三重:完善了访问行为细节的跟踪与分析

    在这个分类下你会较为注重对于用户行为细节的跟踪,从而配置相应的自定义事件跟踪。对于用户在网站上的一些行为我们可以系统性地进行跟踪,比如站内搜索、视频播放、文件下载、表单提交、404错误页面、导出链接的点击、评论提交等等行为我们都可以跟踪起来,从而更好地了解访客的访问行为以提升网站的访问体验和转化率。

    如第二重的内容所说的,你可能会把注册成功作为网站的目标,除了跟踪注册提交成功的事件外,你还可以跟踪注册的方式(是否通过第三方工具帐号进行注册)、注册提交失败的次数与及失败的原因等等。

    除了订单产生的数量,购买流程中每一步的微转化也是值得关注的,找出转化流程中的弱项和问题,想办法修复它,这对于销售的提升效果将是非常明显的。

    对于电商网站来说,用户是否有点击站内广告的行为,从而购买广告推介的产品,我们要怎么完善我们的产品推荐系统,这些都需要数据作支持。

    我们还强烈建议可以对站内搜索与搜索零结果(搜索结果的条目数量)的情况进行跟踪,从而衡量网站的产品或内容是否满足用户的搜索需求,从而增加相应的产品或内容以提升网站销售。而对于一个客服系统来说,优化好这一步,这有可能会大幅减少客服人员的工作量。

    4、工具使用第四重:基于数据的网站优化—数据驱动营销

    在前边三部分其实也应该把网站优化的工作纳入其中,但对于大多数公司来说,网站优化这一步大都做得不好或是做得不够系统。而网站优化是网站运营过程中不可或缺的一个重要环节。

    很多人做的网站分析报告仅仅是停留在报告的层面而没有形成优化行动,这就失去了网站分析的意义。根据报告中提出的有效建议,可以考虑安排进行营销活动或页面内容的优化工作。

    通过数据分析找出更优的推广渠道;同时对内容特别是着陆页面的内容进行A/B/N测试,找出最优的页面版本,这将可以有效地提升网站的转化率从而提升网站的销售!这是网站分析对于提升网站业绩的最直观体现。

    数据挖掘中实用分析方法有哪些?
    刘老师 数据分析师

    1.基于历史的MBR分析

    基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

    MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。

    MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

    2.购物篮分析

    购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。

    购物篮分析基本运作过程包含下列三点:

    选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

    经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。

    克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。

    购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

    3.决策树

    决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。

    4.遗传算法

    遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

    5.聚类分析

    聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

    数据挖掘常用的方法有哪些?
    刘老师 数据分析师

    1、分类

    分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。

    主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。

    2、聚类

    聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,聚类是一种无监督学习。

    聚类的方法(算法):主要的聚类算法可以划分为如下几类,划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法。每一类中都存在着得到广泛应用的算法, 划分方法中有 k-means 聚类算法、层次方法中有凝聚型层次聚类算法、基于模型方法中有神经网络聚类算法。

    3、回归分析

    回归分析是一个统计预测模型,用以描述和评估因变量与一个或多个自变量之间的关系;反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系。

    回归分析的应用:回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。

    回归分析的主要研究问题:数据序列的趋势特征、数据序列的预测、数据间的相关关系等。

    4、关联规则

    关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则是描述数据库中数据项之间所存在的关系的规则。

    5、神经网络方法

    神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的问题,以及那些以模糊、不完整、不严密的知识或数据为特征的问题,它的这一特点十分适合解决数据挖掘的问题。

    6、Web数据挖掘

    web数据挖掘是一项综合性技术,指Web从文档结构和使用的集合C中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

    7、特征分析

    特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。

    8、偏差分析

    偏差是数据集中的小比例对象。通常,偏差对象被称为离群点、例外、野点等。偏差分析就是发现与大部分其他对象不同的对象。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司