问答详情

入门数据分析有哪些小技巧?

859次观看
标签: 数据分析 数据分析技巧
老师回答

1.扎实的专业知识基础

从事任何一个行业都需要对行业有着专业的知识。想要做好数据分析需要掌握多方面的知识和技能,主要分软+硬两大实力,软实力包括沟通能力、表达能力、设计能力等。硬实力则是对于数据分析行业的知识储备能力。

2.对于数据分析理论的理解能力

数据分析需要具备多方面的理论基础,比如基本的数据分析知识:统计、概率论、数据挖掘基础理论等,对于从事数据分析行业的人来说,对于理论的思维理解同样重要,这决定着前进的远近。

3.数据分析工具的熟练掌握

对于数据分析工具的掌握,也就是驾驭工具的能力。至于工具,不论黑猫白猫能解决问题就是好猫,不是说Hadoop就比Oracle强,pyhon就比spss厉害,不同的场景不同的背景对工具的使用也不同。对于数据分析而言,最基础的工具Python、SQL都是必须要掌握的。这决定着后续学习的快慢。

4.敏而好学的心态

行业发展也是存在不断创新的推进,数据分析亦是如此。在遇到问题难以突破时,不仅需要有良好的心态,积极寻找突破点和提高自身的创新力。优秀的数据分析师一定是主动发现问题、解决问题并扛得住压力的。人生是漫长而持续的过程,不必太计较眼前的得与失,如果方向对,慢点也是快。

免费直播

    相关推荐
    数据挖掘要解决的问题有哪些?
    刘老师 数据分析师

    1.可伸缩

    由于数据产生和采集技术的进步,数太字节(TB)、数拍字节(PB)甚至数艾字节(EB)的数据集越来越普遍。如果数据挖掘算法要处理这些海量数据集,则算法必须是可伸缩的。许多数据挖掘算法采用特殊的搜索策略来处理指数级的搜索问题。为实现可伸缩可能还需要实现新的数据结构,才能以有效的方式访问每个记录。

    例如,当要处理的数据不能放进内存时,可能需要核外算法。使用抽样技术或开发并行和分布式算法也可以提高可伸缩程度。

    2.高维性

    现在,常常会遇到具有成百上千属性的数据集,而不是几十年前常见的只具有少量属性的数据集。在生物信息学领域,微阵列技术的进步已经产生了涉及数千特征的基因表达数据。具有时间分量或空间分量的数据集也通常具有很高的维度。

    例如,考虑包含不同地区的温度测量结果的数据集,如果在一个相当长的时间周期内反复地测量,则维数(特征数)的增长正比于测量的次数。为低维数据开发的传统数据分析技术通常不能很好地处理这类高维数据,如维灾难问题。此外,对于某些数据分析算法,随着维数(特征数)的增加,计算复杂度会迅速增加。

    3.异构数据和复杂数据

    通常,传统的数据分析方法只处理包含相同类型属性的数据集,或者是连续的,或者是分类的。随着数据挖掘在商务、科学、医学和其他领域的作用越来越大,越来越需要能够处理异构属性的技术。

    近年来,出现了更复杂的数据对象。这种非传统类型的数据如:含有文本、超链接、图像、音频和视频的Web和社交媒体数据,具有序列和三维结构的DNA数据,由地球表面不同位置、不同时间的测量值(温度、压力等)构成的气候数据。

    为挖掘这种复杂对象而开发的技术应当考虑数据中的联系,如时间和空间的自相关性、图的连通性、半结构化文本和XML文档中元素之间的父子关系。

    4.数据的所有权与分布

    有时,需要分析的数据不会只存储在一个站点,或归属于一个机构,而是地理上分布在属于多个机构的数据源中。这就需要开发分布式数据挖掘技术。分布式数据挖掘算法面临的主要挑战包括:

    如何降低执行分布式计算所需的通信量?如何有效地统一从多个数据源获得的数据挖掘结果?如何解决数据安全和隐私问题?

    5.非传统分析

    传统的统计方法基于一种假设检验模式,即提出一种假设,设计实验来收集数据,然后针对假设分析数据。但是,这一过程劳力费神。当前的数据分析任务常常需要产生和评估数千种假设,因此需要自动地产生和评估假设,这促使人们开发了一些数据挖掘技术。

    此外,数据挖掘所分析的数据集通常不是精心设计的实验的结果,并且它们通常代表数据的时机性样本(opportunistic sample),而不是随机样本(random sample)。

    最常用的四种大数据分析方法有哪些?
    刘老师 数据分析师

    1.描述型分析:发生了什么?

    这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

    例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

    2.诊断型分析:为什么会发生?

    描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

    良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

    3.预测型分析:可能发生什么?

    预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

    预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

    在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

    4.指令型分析:需要做什么?

    数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

    例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。

    数据挖掘具有哪些特点?
    刘老师 数据分析师

    1、基于大量数据:并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。

    2、非平凡性:所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。

    3、隐含性:数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息。常用的BI工具,例如报表和OLAP,完全可以让用户找出这些信息。

    4、新奇性:挖掘出来的知识应该是以前未知的,否则只不过是验证了业务专家的经验而已。只有全新的知识,才可以帮助企业获得进一步的洞察力。

    5、价值性:挖掘的结果必须能给企业带来直接的或间接的效益。有人说数据挖掘只是“屠龙之技”,看起来神乎其神,却什么用处也没有。这只是一种误解,不可否认的是在一些数据挖掘项目中,或者因为缺乏明确的业务目标,或者因为数据质量的不足,或者因为人们对改变业务流程的抵制,或者因为挖掘人员的经验不足,都会导致效果不佳甚至完全没有效果。但大量的成功案例也在证明,数据挖掘的确可以变成提升效益的利器。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司