问答详情

哪些数据分析平台比较好?

1566次观看
标签: 数据分析 数据分析平台
老师回答

1、 Cloudera

Cloudera提供一个可扩展、灵活、集成的平台,可用来方便的管理您的企业中快速增长的多种多样的数据,从而部署和管理Hadoop和相关项目、操作和分析您的数据以及保护数据的安全。Cloudera Manager是一个复杂的应用程序,用于部署、管理、监控CDH部署并诊断问题,Cloudera Manager提供Admin Console,这是一种基于Web的用户界面,是您的企业数据管理简单而直接,它还包括Cloudera Manager API,可用来获取集群运行状况信息和度量以及配置Cloudera Manager。

2、 星环Transwarp

基于hadoop生态系统的大数据平台公司,国内唯一入选过Gartner魔力象限的大数据平台公司,对hadoop不稳定的部分进行了优化,功能上进行了细化,为企业提供hadoop大数据引擎及数据库工具。

3、 阿里数加

阿里云发布的一站式大数据平台,覆盖了企业数仓、商业智能、机器学习、数据可视化等领域,可以提供数据采集、数据深度融合、计算和挖掘服务,将计算的几个通过可视化工具进行个性化的数据分析和展现,图形展示和客户感知良好,但是需要捆绑阿里云才能使用,部分体验功能一般,需要有一定的知识基础。maxcompute(原名ODPS)是数加底层的计算引擎,有两个维度可以看这个计算引擎的性能,一个是6小时处理100PB的数据,相当于1亿部高清电影,另外一个是单集群规模过万台,并支持多集群联合计算。

4、 华为FusionInsight

基于Apache进行功能增强的企业级大数据存储、查询和分析的统一平台。完全开放的大数据平台,可运行在开放的x86架构服务器上,它以海量数据处理引擎和实时数据处理引擎为核心,针对金融、运营商等数据密集型行业的运行维护、应用开发等需求,打造了敏捷、智慧、可信的平台软件。

免费直播

    相关推荐
    数据挖掘要解决的问题有哪些?
    刘老师 数据分析师

    1.可伸缩

    由于数据产生和采集技术的进步,数太字节(TB)、数拍字节(PB)甚至数艾字节(EB)的数据集越来越普遍。如果数据挖掘算法要处理这些海量数据集,则算法必须是可伸缩的。许多数据挖掘算法采用特殊的搜索策略来处理指数级的搜索问题。为实现可伸缩可能还需要实现新的数据结构,才能以有效的方式访问每个记录。

    例如,当要处理的数据不能放进内存时,可能需要核外算法。使用抽样技术或开发并行和分布式算法也可以提高可伸缩程度。

    2.高维性

    现在,常常会遇到具有成百上千属性的数据集,而不是几十年前常见的只具有少量属性的数据集。在生物信息学领域,微阵列技术的进步已经产生了涉及数千特征的基因表达数据。具有时间分量或空间分量的数据集也通常具有很高的维度。

    例如,考虑包含不同地区的温度测量结果的数据集,如果在一个相当长的时间周期内反复地测量,则维数(特征数)的增长正比于测量的次数。为低维数据开发的传统数据分析技术通常不能很好地处理这类高维数据,如维灾难问题。此外,对于某些数据分析算法,随着维数(特征数)的增加,计算复杂度会迅速增加。

    3.异构数据和复杂数据

    通常,传统的数据分析方法只处理包含相同类型属性的数据集,或者是连续的,或者是分类的。随着数据挖掘在商务、科学、医学和其他领域的作用越来越大,越来越需要能够处理异构属性的技术。

    近年来,出现了更复杂的数据对象。这种非传统类型的数据如:含有文本、超链接、图像、音频和视频的Web和社交媒体数据,具有序列和三维结构的DNA数据,由地球表面不同位置、不同时间的测量值(温度、压力等)构成的气候数据。

    为挖掘这种复杂对象而开发的技术应当考虑数据中的联系,如时间和空间的自相关性、图的连通性、半结构化文本和XML文档中元素之间的父子关系。

    4.数据的所有权与分布

    有时,需要分析的数据不会只存储在一个站点,或归属于一个机构,而是地理上分布在属于多个机构的数据源中。这就需要开发分布式数据挖掘技术。分布式数据挖掘算法面临的主要挑战包括:

    如何降低执行分布式计算所需的通信量?如何有效地统一从多个数据源获得的数据挖掘结果?如何解决数据安全和隐私问题?

    5.非传统分析

    传统的统计方法基于一种假设检验模式,即提出一种假设,设计实验来收集数据,然后针对假设分析数据。但是,这一过程劳力费神。当前的数据分析任务常常需要产生和评估数千种假设,因此需要自动地产生和评估假设,这促使人们开发了一些数据挖掘技术。

    此外,数据挖掘所分析的数据集通常不是精心设计的实验的结果,并且它们通常代表数据的时机性样本(opportunistic sample),而不是随机样本(random sample)。

    数据分析常见流程有哪些?
    刘老师 数据分析师

    1、为什么分析?

    首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,什么类型的客户交货期总是拖延。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。

    2、分析目标是谁?

    要牢记清楚的分析因子,统计维度是金额,还是产品,还是供应商行业竞争趋势,还是供应商规模等等。避免把金额当产品算,把产品当金额算,算出的结果是差别非常大的。

    3、想达到什么效果?

    通过分析各个维度产品类型,公司采购周期,采购条款,找到真正的问题。例如这次分析的薄弱环节供应商,全部集中采购,和保持现状,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现精细化采购管理已经非常必要了。

    4、需要哪些数据?

    采购过程涉及的数据,很多,需要哪些源数据?采购总额?零部件行业竞争度?货款周期?采购频次?库存备货数?客户地域因子?客户规模?等等列一个表。避免不断增加新的因子。

    5、如何采集?

    数据库中供应商信息采集,平时供应商各种信息录入,产品特性录入等,做数据分析一定要有原料,否则巧妇难为无米之炊。

    6、如何整理?

    整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。

    7、如何分析?

    整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对供应商很了解,对采购流程很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。

    8、如何展现和输出?

    数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:

    1)折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。

    2)柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。

    3)堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。

    4)线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。

    5)条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。

    6)饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。

    7)复合饼图:一般是对某项比例的下一步分析。

    8)母子饼图:可直观地分析项目的组成结构与比重

    图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。

    有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。

    在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司