问答详情

怎么培养数据分析能力?

913次观看
标签: 数据分析 培养数据分析能力
老师回答

首先是前期的分析理论准备阶段,包括:明确业务场景、确立分析目标和列出核心指标。

我们要做的就是,首先明确是什么样的业务场景,不同的业务,分析体系也随之不同;然后,结合业务问题确定分析的目标,列出核心指标,再搜集整理所需要的数据。

接下来就是正式的数据分析阶段,包括:数据获取、数据清洗和分析数据。

互联网时代,数据获取看似难度不大,但不是所有获取的数据都具有分析价值,往往需要数据分析工作者运用结构化的逻辑思维将商业问题转化成数据问题,如,需要哪些字段,从哪些角度来分析等等,在界定了这些问题后,再进行数据采集。

采集到的数据不一定可以直接进行使用,因此需要对数据进行简单的清洗,一般会借助一些工具协助进行,比如最基础的Excel制表工具等等。

免费直播

    相关推荐
    数据挖掘免费软件工具有哪些?
    刘老师 数据分析师

    1.Rapid Miner

    Rapid Miner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界领先的数据挖掘开源系统。该工具以Java编程语言编写,通过基于模板的框架提供高级分析。

    它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。最好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。

    2. IBM SPSS Modeler

    IBM SPSS Modeler工具工作台最适合处理文本分析等大型项目,其可视化界面非常有价值。 它允许您在不编程的情况下生成各种数据挖掘算法。 它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。

    3.Oracle Data Mining

    Oracle。 作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。

    Oracle Data Miner GUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。 它还可以为整个企业的自动化、调度和部署创建SQL和PL / SQL脚本。

    开源数据挖掘工具有哪些?
    刘老师 数据分析师

    1、RapidMiner

    该工具是用Java语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。

    另外,除了数据挖掘,RapidMiner还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自WEKA(一种智能分析环境)和R 脚本的学习方案、模型和算法。

    RapidMiner分布在AGPL开源许可下,可以从SourceForge上下载。SourceForge是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括维基百科使用的MediaWiki。

    2、WEKA

    WEKA原生的非Java版本主要是为了分析农业领域数据而开发的。该工具基于Java版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与RapidMiner相比优势在于,它在GNU通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。

    WEKA支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。

    添加序列建模后,WEKA将会变得更强大,但目前不包括在内。

    3、R-Programming

    如果我告诉你R项目,一个GNU项目,是由R(R-programming简称,以下统称R)自身编写的,你会怎么想它主要是由C语言和FORTRAN语言编写的,并且很多模块都是由R编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了R的知名度。

    除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。

    数据分析的误区有哪些?
    刘老师 数据分析师

    1、数据分析需要大量投资

    如今,似乎对每一项新技术的投入都必须通过严格的财务支出的筛选过程。“它需要多少费用?”——是IT和业务经理在提议启动项目或部署新工具时需要首先考虑的问题之一。

    有些人认为数据分析本质上是一项代价高昂的工作,因此仅限于拥有大量预算或大量内部资源的企业机构。但是事实并非如此,现在市场上有很多开源工具和其他工具能够帮助展示数据分析的价值;并且基于云系统的大数据架构,也会比传统的数据仓库便宜得多。你只需要明确内部数据存储以及要解决的问题,就可以轻松的在云上使用分析来解决业务问题。

    此外,数据分析通常用于实现三个结果:提高流程效率、实现收入增长和主动进行风险管理,总的来说,数据分析在任何公司的应用中都带来了巨大的成本效益。

    2、你需要“大数据”才能执行分析

    对于许多人来说,大数据和分析的概念是相辅相成的,企业需要在执行分析之前收集大量数据,以便生成业务洞察,改进决策制定等。

    当然,大数据分析的优势也很明确,拥有这些资源的公司利用大数据存储作为促进分析工作的一部分,获得了显着的竞争优势。但是大数据却并不是分析必不可少的搭配。

    分析师需要特定的数据,而不是更多的数据。要想更好地支持决策和提高绩效,企业必须更多的考虑业务用户,确定他们需要访问哪些数据,如何呈现数据,而不是关注更多的数据。95%以上的用户会寻找和他们工作相关的信息来支持他们进行决策,来提高业务表现,所以企业需要以最简单的格式向他们提供这些信息,帮助他们快速定位重要信息。

    3、分析消除了人类的偏见

    自动化系统执行的方式不应该存在偏见,但技术是由人类建立的,因此消除所有偏见几乎是不可能的。

    有些人认为分析和机器学习消除了人类的偏见,不幸的是,这并没有实现。算法和分析使用“训练数据”进行调整,并将重现“训练数据”所具有的任何特征,在某些情况下,这会在分析过程中引入良性偏见,但也有可能带来更严重的偏见——因为“算法这么说”并不意味着答案是公平的或者有用的。

    4、最好的算法意味着绝对的胜利

    事实证明,有了足够的数据,有时算法无关紧要。谷歌的工程师认为,数据有着不合理有效性 ,简单的统计模型,加上极大量的数据,比包含大量特征和总结的“智能优越模型”能输出更优质的结果。

    因此,在某些情况下,只需处理更大量的数据就可以获得最佳效果。

    5、算法是安全的

    人们固执地信任统计模型和算法,并且随着分析程序的组织构建,他们会越来越依赖复杂的模型来支持决策。这或许是因为用户并不觉得他们有能力挑战模型,因此他们必须相信构建它们的“聪明人”。

    比如,在过去的50到60年里,我们反复听到“人工智能将在20年内接管人类工作”的言论,现在也还是有人反复强调这种观点。在我们可以完全信任机器学习和它们输出的结果之前,还有很多事情要做。在那之前,我们需要挑战构建算法和模型的人,让他们解释如何得到答案。这并不是说我们不能依赖于结果,而是说我们需要透明度,这样我们才可以信任和验证分析结果。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司