问答详情

商业数据分析怎么做?

1377次观看
标签: 商业数据 商业数据分析
老师回答

1.数据收集

当我们在做数据分析时,第一步要解决的问题肯定就是数据源的问题。Allen通常把数据分为二大类。第一类是直接能获取的数据,通常都是内部数据。无非就是从网站后台或者是自己家的数据库里面导。第二类就是外部数据,需要经过加工整理后得到的数据。

2. 数据清洗

清洗数据(筛选、清除、补充、纠正)的目的是从大量的、杂乱无章、难以理解的数据中抽取并推导出对解决问题有价值、有意义的数据。清洗后、保存下来真正有价值、有条理的数据,为后面做数据分析减少分析障碍。

3. 数据对比

对比,是数据分析的切入点。因为如果没参照物,数据就没有一个定量的评估标准。

横向对比,与行业平均数据,与竞争对手的数据进行比对。举个粟子,比如你家的APP用户留存率是60%,而行业平均留存是70%或竞争对手的用户留存率是70%,那就说明你家的产品在留存率方面有待加强!

纵向对比,与自家产品的历史数据进行对比,围绕着时间轴来对比。

4. 数据细分

数据对比发现了异常,我们当然想知道是什么原因导致的。这里就要用到数据细分了,数据细分通常情况下先分纬度,再分粒度。

5.数据溯源

通常情况下,通过数据细分就能分析出大多数问题的原因并推导出结论了。但也有特殊的情况,即使具体到粒度了也得不出有说服力的结论。

免费直播

    相关推荐
    数据分析方法论有哪些?
    刘老师 数据分析师

    1、PEST分析法

    PEST,也就是政治(Politics)、经济(Economy)、社会(Society)、技术(Technology),能从各个方面把握宏观环境的现状及变化趋势,主要用户行业分析。

    宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。

    对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。

    政治环境:政治体制、经济体制、财政政策、税收政策、产业政策、投资政策等。

    社会环境:人口规模、性别比例、年龄结构、生活力式、购买习惯、城市特点等。

    技术环境:折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度等。

    经济环境:GDP 及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。

    2、5W2H分析法

    5W2H,即为什么(Why)、什么事(What)、谁(Who)、什么时候(When)、什么地方(Where)、如何做(How)、什么价格(How much),主要用于用户行为分析、业务问题专题分析、营销活动等。

    该分析方法又称为七何分析法,是一个非常简单、方便又实用的工具,以用户购买行为为例:

    Why:用户为什么要买?产品的吸引点在哪里?

    What:产品提供的功能是什么?

    Who:用户群体是什么?这个群体的特点是什么?

    When:购买频次是多少?

    Where:产品在哪里最受欢迎?在哪里卖出去?

    How:用户怎么购买?购买方式什么?

    How much:用户购买的成本是多少?时间成本是多少?

    3、SWOT分析法

    SWOT分析法也叫态势分析法,S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁或风险。

    SWOT分析法是用来确定企业自身的内部优势、劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析。

    运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而将公司的战略与公司内部资源、外部环境有机地结合起来。

    4、4P营销理论

    4P即产品(Product)、价格(Price)、渠道(Place)、推广(Promotion),在营销领域,这种以市场为导向的营销组合理论,被企业应用最普遍。

    可以说企业的一切营销动作都是在围绕着4P理论进行,也就是将:产品、价格、渠道、推广。通过将四者的结合、协调发展,从而提高企业的市场份额,达到最终获利的目的。

    产品:从市场营销的角度来看,产品是指能够提供给市场,被入们使用和消费并满足人们某种需要的任何东西,包括有形产品、服务、人员、组织、观念或它们的组合。

    价格:是指顾客购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响定价的主要因素有三个:需求、成本与竞争。

    渠道:是指产品从生产企业流转到用户手上全过程中所经历的各个环节。

    促销:是指企业通过销售行为的改变来刺激用户消费,以短期的行为(比如让利、买一送一,营销现场气氛等等)促成消费的增长,吸引其他品牌的用户或导致提前消费来促进销售的增长。广告、宣传推广、人员推销、销售促进是一个机构促销组合的四大要素。

    5、逻辑树法

    逻辑树又称问题树、演绎树或分解树等。它是把一个已知问题当成“主干”,然后开始考虑这个问题和哪些相关问题有关,也就是“分支”。逻辑树能保证解决问题的过程的完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确地把责任落实到个人。

    逻辑树的使用必须遵循以下三个原则:

    要素化:把相同的问题总结归纳成要素。

    框架化:将各个要素组织成框架。遵守不重不漏的原则。

    关联化:框架内的各要素保持必要的相互关系,简单而不独立。

    6、AARRR模型

    AARRR模型是所有运营人员都要了解的一个数据模型,从整个用户生命周期入手,包括获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和传播(Refer)。

    每个环节分别对应生命周期的5个重要过程,即从获取用户,到提升活跃度,提升留存率,并获取收入,直至最后形成病毒式传播。

    如何高效的运用网站分析工具?
    刘老师 数据分析师

    1、工具使用第一重:仅仅是页面流数据

    很多人把工具生成的代码往网站页面上一贴,认为网站的跟踪代码配置就基本完成了。但事情并没有那么简单,分析系统中生成的跟踪代码只能简单的跟踪页面流的数据,比如访问数、浏览量、流量来源等等,用户与网站的交互行为比如表单提交、订单达成是无法跟踪得到的。

    网站的跟踪代码应该要根据具体的网站业务需求来配置跟踪方案。在添加跟踪代码前需要相关的业务人员聚在一起讨论把数据跟踪需求整理出来,根据需求形成一个完成的跟踪方案,从而生成相应的跟踪代码并添加到网站中。

    很多网站甚至是一部分电商网站都只是做到了这一步,但其实这远远没有把网站跟踪系统的功能发挥出来。

    因为受限跟踪配置的内容,系统只能收集到页面流的数据,因此用户也只能简单地查看网站的访问数、页面的浏览量以及流量来源的相关数据,但用户来到了网站有没有一些非浏览量的交互行为,是否有产生订单或产生了哪些产品的订单,无从得知。因此也没有明确的指标用于指导网站优化和外部推广(仅有的跳出率是不够的)。

    2、工具使用第二重:配置了目标或电子商务跟踪

    有部分用户在页面流数据跟踪的基础上会增加目标与电子商务数据的跟踪配置,这就进入我们所说的“网站分析第二重”。

    目标与电子商务数据是衡量网站绩效的重要指标。对于会员制的电商网站来说,一个非常重要的目标就是会员数据的增加,而电子商务销售则是网站的终极目标。对这两块数据进行跟踪,我们就可以很好地衡量网站与及流量来源的转化情况。

    把目标与电子商务的数据跟踪起来后,我们就可以把转化的数据与流量来源及页面浏览行为相关联,我们就可以很好地分析网站流量来源与页面浏览行为的转化情况。从而知道从哪些流量来源过来的流量质量最高,哪些产品或页面的说服力更强可以吸引用户完成订单转化,这样我们就可以有针对性地增加那些转化率高的流量来源的流量,并对一些转化偏低的产品或页面进行优化。

    3、工具使用第三重:完善了访问行为细节的跟踪与分析

    在这个分类下你会较为注重对于用户行为细节的跟踪,从而配置相应的自定义事件跟踪。对于用户在网站上的一些行为我们可以系统性地进行跟踪,比如站内搜索、视频播放、文件下载、表单提交、404错误页面、导出链接的点击、评论提交等等行为我们都可以跟踪起来,从而更好地了解访客的访问行为以提升网站的访问体验和转化率。

    如第二重的内容所说的,你可能会把注册成功作为网站的目标,除了跟踪注册提交成功的事件外,你还可以跟踪注册的方式(是否通过第三方工具帐号进行注册)、注册提交失败的次数与及失败的原因等等。

    除了订单产生的数量,购买流程中每一步的微转化也是值得关注的,找出转化流程中的弱项和问题,想办法修复它,这对于销售的提升效果将是非常明显的。

    对于电商网站来说,用户是否有点击站内广告的行为,从而购买广告推介的产品,我们要怎么完善我们的产品推荐系统,这些都需要数据作支持。

    我们还强烈建议可以对站内搜索与搜索零结果(搜索结果的条目数量)的情况进行跟踪,从而衡量网站的产品或内容是否满足用户的搜索需求,从而增加相应的产品或内容以提升网站销售。而对于一个客服系统来说,优化好这一步,这有可能会大幅减少客服人员的工作量。

    4、工具使用第四重:基于数据的网站优化—数据驱动营销

    在前边三部分其实也应该把网站优化的工作纳入其中,但对于大多数公司来说,网站优化这一步大都做得不好或是做得不够系统。而网站优化是网站运营过程中不可或缺的一个重要环节。

    很多人做的网站分析报告仅仅是停留在报告的层面而没有形成优化行动,这就失去了网站分析的意义。根据报告中提出的有效建议,可以考虑安排进行营销活动或页面内容的优化工作。

    通过数据分析找出更优的推广渠道;同时对内容特别是着陆页面的内容进行A/B/N测试,找出最优的页面版本,这将可以有效地提升网站的转化率从而提升网站的销售!这是网站分析对于提升网站业绩的最直观体现。

    数据挖掘免费软件工具有哪些?
    刘老师 数据分析师

    1.Rapid Miner

    Rapid Miner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界领先的数据挖掘开源系统。该工具以Java编程语言编写,通过基于模板的框架提供高级分析。

    它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。最好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。

    2. IBM SPSS Modeler

    IBM SPSS Modeler工具工作台最适合处理文本分析等大型项目,其可视化界面非常有价值。 它允许您在不编程的情况下生成各种数据挖掘算法。 它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。

    3.Oracle Data Mining

    Oracle。 作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。

    Oracle Data Miner GUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。 它还可以为整个企业的自动化、调度和部署创建SQL和PL / SQL脚本。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司