问答详情

大数据工程发展现状如何?

822次观看
标签: 大数据工程 大数据工程发展现状
老师回答

大数据范畴已有很多成功的大数据使用,但就其效果和深度而言,当时大数据使用尚处于初级阶段,依据大数据剖析猜测未来、指导实践的深层次使用将成为发展要点。当时,在大数据使用的实践中,描述性、猜测性剖析使用多,决议计划指导性等更深层次剖析使用偏少。

大数据管理系统远未形成,特别是隐私维护、数据安全与数据同享使用功率之间尚存在明显矛盾,成为限制大数据发展的重要短板,各界已经意识到构建大数据管理系统的重要意义。其间,隐私、安全与同享使用之间的矛盾问题尤为凸显。一方面,数据同享敞开的需求非常火急;另一方面,数据的无序流通与同享,又或许导致隐私维护和数据安全方面的严重风险,必须对其加以标准和限制。

数据规模高速增加,现有技能系统难以满意大数据使用的需求,大数据理论与技能远未成熟,未来信息技能系统将需求颠覆式创新和变革。近年来,大数据获取、存储、管理、处理、剖析等相关的技能已有显著发展,可是大数据技能系统尚不完善,大数据基础理论的研究仍处于萌芽期。

免费直播

    精选课程
    相关推荐
    大数据岗位方向都有哪些?
    刘老师 大数据工程师

    1、大数据开发工程师

    开发,建设,测试和维护架构;负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。

    2、数据分析师

    收集,处理和执行统计数据分析;运用工具,提取、分析、呈现数据,实现数据的商业意义,需要业务理解和工具应用能力。

    3、数据挖掘工程师

    数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。

    4、数据架构师

    需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力。

    5、数据库开发

    设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。

    6、数据库管理

    数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等。

    7、数据科学家

    数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换。

    8、数据产品经理

    把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司