问答详情

大数据工程师要具备哪些技术?

731次观看
标签: 大数据工程师 大数据工程师技术
老师回答

 

1.大数据架构东西与组件

企业大数据结构的搭建,多是挑选根据开源技能结构来实现的,这其中就包含Hadoop、Spark、Storm、Flink为主的一系列组件结构,及其生态圈组件。

2.深化了解SQL和其它数据库解决方案

大数据工程师需要了解数据库办理体系,深化了解SQL。相同其它数据库解决方案,例如Cassandra或MangoDB也须了解,由于不是每个数据库都是由可识别的标准来构建。

3.数据仓库和ETL东西

数据仓库和ETL才能对于大数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL东西,比方StitchData或Segment都十分有用。

4.根据Hadoop的剖析

对根据Apache Hadoop的数据处理结构,需要有深化的了解,至少HBase,Hive和MapReduce的知识存储是必需的。

5.编码

编码与开发才能是作为大数据工程师的重要要求,主要掌握Java、Scala、Python三门语言,这在大数据当中十分关键。

免费直播

    精选课程
    相关推荐
    大数据预测分析方法有哪些?
    刘老师 大数据工程师

    1、可视化分析

    大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

    2、数据挖掘算法

    大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

    3、预测性分析能力

    大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

    4、数据质量和数据管理

    大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司