问答详情

数据分析技术有什么发展趋势?

1070次观看
标签: 数据分析 数据分析技术趋势
老师回答

一、更智能、负责任的、可扩展的AI

人工智能和机器学习正在带来更大的影响,要求企业采用新技术构建更智能的、消耗数据更少的、符合道德原则的、更具弹性的AI解决方案。企业组织通过部署更智能、更负责任的、更可扩展的AI,将利用学习算法和可解释的系统加速价值实现给业务带来更大影响力。

二、可组合式的数据和分析

开放的、容器化的分析架构让数据分析功能可组合性更强。可组合式的数据分析利用来自多个数据、分析和AI解决方案的组件,快速构建灵活且用户友好型的智能应用,从而帮助数据分析领导者将洞察和行动连接在一起。随着数据重心转移到云端,可组合式的数据分析将成为一种更加敏捷的方式,开发支持云市场、低代码和无代码解决方案的分析应用。

三、数据架构是基础

更高程度的数字化和不再受约束的消费者,推动着数据分析领导者越来越多地使用数据架构来一个对企业组织数据资产日益加剧的多样化、分布式、规模和复杂性。数据架构利用分析功能来持续监控数据管道,通过对数据资产的持续分析,支持各种数据的设计、部署和使用,缩短集成时间30%,缩短部署时间30%,缩短维护时间70%。

四、从大数据到小数据、宽数据

疫情给企业带来的极端变革,导致那些基于大量历史数据的机器学习和人工智能模型变得不那么重要了。同时,由人类和AI做出的决策变得更加复杂和苛刻,要求数据分析领导者拥有更多种类的数据才能更好地了解态势。

免费直播

    相关推荐
    数据分析的误区有哪些?
    刘老师 数据分析师

    1、数据分析需要大量投资

    如今,似乎对每一项新技术的投入都必须通过严格的财务支出的筛选过程。“它需要多少费用?”——是IT和业务经理在提议启动项目或部署新工具时需要首先考虑的问题之一。

    有些人认为数据分析本质上是一项代价高昂的工作,因此仅限于拥有大量预算或大量内部资源的企业机构。但是事实并非如此,现在市场上有很多开源工具和其他工具能够帮助展示数据分析的价值;并且基于云系统的大数据架构,也会比传统的数据仓库便宜得多。你只需要明确内部数据存储以及要解决的问题,就可以轻松的在云上使用分析来解决业务问题。

    此外,数据分析通常用于实现三个结果:提高流程效率、实现收入增长和主动进行风险管理,总的来说,数据分析在任何公司的应用中都带来了巨大的成本效益。

    2、你需要“大数据”才能执行分析

    对于许多人来说,大数据和分析的概念是相辅相成的,企业需要在执行分析之前收集大量数据,以便生成业务洞察,改进决策制定等。

    当然,大数据分析的优势也很明确,拥有这些资源的公司利用大数据存储作为促进分析工作的一部分,获得了显着的竞争优势。但是大数据却并不是分析必不可少的搭配。

    分析师需要特定的数据,而不是更多的数据。要想更好地支持决策和提高绩效,企业必须更多的考虑业务用户,确定他们需要访问哪些数据,如何呈现数据,而不是关注更多的数据。95%以上的用户会寻找和他们工作相关的信息来支持他们进行决策,来提高业务表现,所以企业需要以最简单的格式向他们提供这些信息,帮助他们快速定位重要信息。

    3、分析消除了人类的偏见

    自动化系统执行的方式不应该存在偏见,但技术是由人类建立的,因此消除所有偏见几乎是不可能的。

    有些人认为分析和机器学习消除了人类的偏见,不幸的是,这并没有实现。算法和分析使用“训练数据”进行调整,并将重现“训练数据”所具有的任何特征,在某些情况下,这会在分析过程中引入良性偏见,但也有可能带来更严重的偏见——因为“算法这么说”并不意味着答案是公平的或者有用的。

    4、最好的算法意味着绝对的胜利

    事实证明,有了足够的数据,有时算法无关紧要。谷歌的工程师认为,数据有着不合理有效性 ,简单的统计模型,加上极大量的数据,比包含大量特征和总结的“智能优越模型”能输出更优质的结果。

    因此,在某些情况下,只需处理更大量的数据就可以获得最佳效果。

    5、算法是安全的

    人们固执地信任统计模型和算法,并且随着分析程序的组织构建,他们会越来越依赖复杂的模型来支持决策。这或许是因为用户并不觉得他们有能力挑战模型,因此他们必须相信构建它们的“聪明人”。

    比如,在过去的50到60年里,我们反复听到“人工智能将在20年内接管人类工作”的言论,现在也还是有人反复强调这种观点。在我们可以完全信任机器学习和它们输出的结果之前,还有很多事情要做。在那之前,我们需要挑战构建算法和模型的人,让他们解释如何得到答案。这并不是说我们不能依赖于结果,而是说我们需要透明度,这样我们才可以信任和验证分析结果。

    数据挖掘常用的方法有哪些?
    刘老师 数据分析师

    1、分类

    分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。

    主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。

    2、聚类

    聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,聚类是一种无监督学习。

    聚类的方法(算法):主要的聚类算法可以划分为如下几类,划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法。每一类中都存在着得到广泛应用的算法, 划分方法中有 k-means 聚类算法、层次方法中有凝聚型层次聚类算法、基于模型方法中有神经网络聚类算法。

    3、回归分析

    回归分析是一个统计预测模型,用以描述和评估因变量与一个或多个自变量之间的关系;反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系。

    回归分析的应用:回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。

    回归分析的主要研究问题:数据序列的趋势特征、数据序列的预测、数据间的相关关系等。

    4、关联规则

    关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则是描述数据库中数据项之间所存在的关系的规则。

    5、神经网络方法

    神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的问题,以及那些以模糊、不完整、不严密的知识或数据为特征的问题,它的这一特点十分适合解决数据挖掘的问题。

    6、Web数据挖掘

    web数据挖掘是一项综合性技术,指Web从文档结构和使用的集合C中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

    7、特征分析

    特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。

    8、偏差分析

    偏差是数据集中的小比例对象。通常,偏差对象被称为离群点、例外、野点等。偏差分析就是发现与大部分其他对象不同的对象。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司