问答详情

数据分析师需要学习哪些技能?

926次观看
标签: 数据分析师技能 数据分析师
老师回答

Excel工具

对于数据分析师来说,Excel是一个必备的技能,经过大量的实践发现,Excel是一个比较靠谱的工具,如果用Excel分析数据,就能够做好数据的分析,同时Excel操作也是比较简单的,不是程序员也能够正常的使用。现在有很多企业都在使用Excel这项工具进行去分析数据,所以,数据分析师必须要学会使用Excel。

②行业知识

对于数据分析师来说,业务的了解比数据方法论更重要。而且业务学习没有捷径,基本都靠不断的思考与不断的总结,这样才能够做好数据分析。

③SQL

sql是所有数据库查询的语言,而数据库也是有很多的类型的,比如mysql、sqlserver、oracle等等,对于不同的数据库,sql语法会有所不同,但是总体上大同小异,只是细微处的差别。如果大家有数据库基础的话,那么只需要找些sql的题目做一做,这样也能够提到sql水平。

④数据分析思维

如果作为一名数据分析师,需要很缜密的心思以及对数据很敏感的喜欢,这样才能够发现他人会遗漏的东西。有力这些还不够,我们还需要有一个数据分析的思维,那么怎么有一个数据分析的思维呢?一般来说,需要梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即清楚如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。同时,确保分析框架的体系化和逻辑性。

⑤统计学

一名优秀的数据分析师还应该精通统计学,只有学会了统计学,才能够进行数据分析,数据分析是通过大量的数据进行挑选出有用的数据,这样才能够做好正确的分析。统计学的统计知识能够让我们多了一种角度去看待数据,这样能够看出不同的情况,为数据分析中提供了参考价值。

免费直播

    相关推荐
    数据分析的5种细分方法有哪些?
    刘老师 数据分析师

    1.按时间细分

    时间可以细分为不同的跨度,包括年、月、周、日、时、分、秒等等,不同的时间跨度,数据表现可能大不相同。

    比如说,按照月度来看,产品的销量可能变化不大,但是如果细分到每一天,可能就有比较剧烈的变化,我们应该找到这些变化的数据,并分析变化背后的原因,而不是让它淹没在整月汇总数据的表象之中。

    2.按空间细分

    空间主要是指按地域进行划分,包括世界、洲、国家、省份、城市、区等等。

    比如说,把全国的 GDP 数据,细分到每一个省份。

    空间作为一个相对抽象的概念,也可以代表其他与业务相关的各种事物,比如产品、人员、类别等等,只要有助于理解事物的本质,都可以尝试拿来进行细分。

    3.按过程细分

    把业务细分为一些具体的过程,往往能够让复杂的问题简单化。

    比如说,把订单发货细分为 5 个过程,想办法提升每个过程的效率,从而缩短发货的时间。

    再比如,把用户的生命周期,细分为 5 个重要的过程,即:获取、激活、留存、盈利、推荐。

    4.按公式细分

    有时候一个指标,是可以用公式计算出来的。

    比如说,销售额 = 销售数量 * 平均单价,销售数量 = 新客户购买数量 + 老客户购买数量,以此类推。

    再比如,在财务分析中,权益净利率 = 资产净利率 * 权益乘数,其中:资产净利率 = 销售净利率 * 资产周转率,以此类推。

    5.按模型细分

    数据分析的模型有很多,我们可以根据业务的实际情况,选择合适的模型,在此基础上进行细分,得出相应的分析结论。

    比如说,按照波士顿矩阵,把企业产品细分为「市场占有率」和「销售增长率」两个维度,然后画一个四象限矩阵图,其中每个象限就代表一类产品,即:明星产品、金牛产品、瘦狗产品和问题产品,对每一类产品,分别建议采取不同的发展策略。

    再比如,按照 RFM 模型,把客户按三个维度进行细分,即:最近一次消费时间间隔(Recency)、消费频率(Frequency)和消费金额(Monetary),从而得到 8 种客户类别,从而有针对性地采取不同的营销策略。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司