问答详情

大数据分析师的发展前景怎么样?

1909次观看
标签: 大数据分析师的 大数据分析师的发展前景
老师回答

随着大数据技术在各行各业应用的越来越广,数据驱动智能产品和精细化运营已经成为企业经营的制胜法宝,相应地,数据分析师这个岗位也越来越受到关注,越来越多的小伙伴也转行做数据分析,因为大家不仅看到的是未来数据分析的发展前景,而且数据分析师的薪资待遇也很不错。

岗位缺口大,就业薪资高,而且这个岗位对学历的要求不是特别高,对经验的要求也不算严格,从而数据分析师,在大数据时代,迎来了黄金就业期。

数据分析师,这是数据分析职业的起点。有些企业则会根据自身所处行业特点,赋予数据分析师一些更具体的岗位名称,例如业务分析师、运营分析师、数据库分析师和财务数据分析师等。除了所处的行业不同、业务不同,对于技术来说万变不离其宗,所有数据分析师的最主要职能都是针对业务或运营问题或需求,去获取、清洗、分析数据,并呈现数据分析结果,辅助企业做出判断或决策。

免费直播

    相关推荐
    提升企业数据分析能力的技术有哪些?
    刘老师 数据分析师

    1.回归分析

    当您需要进行预测和预测未来趋势时, 回归分析是很好的工具。回归测量因变量 (要测量的变量) 和自变量 (用于预测因变量的数据) 之间的关系。虽然你只能有一个因变量, 但你可以有几乎无限数量的独立变量。回归还可以帮助您发现运营中可以通过突出趋势和因素之间的关系来优化的业务点。

    2.假设检验

    这种分析方法也称为“T 测试”, 可将所拥有的数据与假设进行比较。它还可以预测可能做出的决策将如何影响您的业务。T 测试可以比较两个变量, 以找到相关性, 并根据结果做出决策。例如, 实际业务中可能会假设更多的工作时间相当于更高的生产率。在实施延长工作时间之前, 重要的是要确保有真正的效果, 以避免造成不好的反作用。

    3.蒙特卡洛模拟

    作为计算不可预知变量对特定因子影响的最常用方法之一, 蒙特卡罗模拟使用概率建模来帮助预测风险和不确定性。为了测试假设或场景, 蒙特卡洛模拟将使用随机数和数据, 根据任何结果对任何情况进行各种可能的结果进行分析。这是一个非常有用的数据分析方法,可以跨越多个领域应用,包括项目管理、财务、工程、物流等等。通过测试各种可能性,可以了解随机变量如何影响您的计划和项目。

    4.内容分析

    这种方法有助于了解定性数据中出现的总体主题。使用词云图颜色编码特定主题和想法等技术有助于分析文本数据,以找到最常见的线程。在处理用户反馈、访谈数据、开放式调查等数据时,内容分析可以很好地工作。这有助于确定需要改进的最重要领域。

    5.叙事分析

    叙事分析主要包含五个要素,即行动(act)、场景(scene)、行动者(agent)、能动性(agency)和目的(purpose)。这种分析侧重于故事和想法在整个公司的沟通方式,可以帮助你更好地了解组织文化。这可能包括解释员工对其工作的感受、客户对组织的看法以及如何查看运营流程。它在考虑改变企业文化或规划新的营销策略时非常有用。

    没有统计分析的黄金标准,也没有绝对正确的方法。选择的方法应始终反映收集的数据以及要提取的解决方案类型。匹配正确的数据和分析有助于发现更好的方案,以优化企业的业务,对企业业务进行数字化变革。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司