问答详情

数据分析技术有什么趋势?

713次观看
标签: 数据分析 数据分析技术趋势
老师回答

1、更智能、负责任的、可扩展的AI

人工智能和机器学习正在带来更大的影响,要求企业采用新技术构建更智能的、消耗数据更少的、符合道德原则的、更具弹性的AI解决方案。企业组织通过部署更智能、更负责任的、更可扩展的AI,将利用学习算法和可解释的系统加速价值实现给业务带来更大影响力。

2、可组合式的数据和分析

开放的、容器化的分析架构让数据分析功能可组合性更强。可组合式的数据分析利用来自多个数据、分析和AI解决方案的组件,快速构建灵活且用户友好型的智能应用,从而帮助数据分析领导者将洞察和行动连接在一起。随着数据重心转移到云端,可组合式的数据分析将成为一种更加敏捷的方式,开发支持云市场、低代码和无代码解决方案的分析应用。

3、数据架构是基础

更高程度的数字化和不再受约束的消费者,推动着数据分析领导者越来越多地使用数据架构来一个对企业组织数据资产日益加剧的多样化、分布式、规模和复杂性。数据架构利用分析功能来持续监控数据管道,通过对数据资产的持续分析,支持各种数据的设计、部署和使用,缩短集成时间30%,缩短部署时间30%,缩短维护时间70%。

4、从大数据到小数据、宽数据

疫情给企业带来的极端变革,导致那些基于大量历史数据的机器学习和人工智能模型变得不那么重要了。同时,由人类和AI做出的决策变得更加复杂和苛刻,要求数据分析领导者拥有更多种类的数据才能更好地了解态势。

免费直播

    相关推荐
    提升企业数据分析能力的技术有哪些?
    刘老师 数据分析师

    1.回归分析

    当您需要进行预测和预测未来趋势时, 回归分析是很好的工具。回归测量因变量 (要测量的变量) 和自变量 (用于预测因变量的数据) 之间的关系。虽然你只能有一个因变量, 但你可以有几乎无限数量的独立变量。回归还可以帮助您发现运营中可以通过突出趋势和因素之间的关系来优化的业务点。

    2.假设检验

    这种分析方法也称为“T 测试”, 可将所拥有的数据与假设进行比较。它还可以预测可能做出的决策将如何影响您的业务。T 测试可以比较两个变量, 以找到相关性, 并根据结果做出决策。例如, 实际业务中可能会假设更多的工作时间相当于更高的生产率。在实施延长工作时间之前, 重要的是要确保有真正的效果, 以避免造成不好的反作用。

    3.蒙特卡洛模拟

    作为计算不可预知变量对特定因子影响的最常用方法之一, 蒙特卡罗模拟使用概率建模来帮助预测风险和不确定性。为了测试假设或场景, 蒙特卡洛模拟将使用随机数和数据, 根据任何结果对任何情况进行各种可能的结果进行分析。这是一个非常有用的数据分析方法,可以跨越多个领域应用,包括项目管理、财务、工程、物流等等。通过测试各种可能性,可以了解随机变量如何影响您的计划和项目。

    4.内容分析

    这种方法有助于了解定性数据中出现的总体主题。使用词云图颜色编码特定主题和想法等技术有助于分析文本数据,以找到最常见的线程。在处理用户反馈、访谈数据、开放式调查等数据时,内容分析可以很好地工作。这有助于确定需要改进的最重要领域。

    5.叙事分析

    叙事分析主要包含五个要素,即行动(act)、场景(scene)、行动者(agent)、能动性(agency)和目的(purpose)。这种分析侧重于故事和想法在整个公司的沟通方式,可以帮助你更好地了解组织文化。这可能包括解释员工对其工作的感受、客户对组织的看法以及如何查看运营流程。它在考虑改变企业文化或规划新的营销策略时非常有用。

    没有统计分析的黄金标准,也没有绝对正确的方法。选择的方法应始终反映收集的数据以及要提取的解决方案类型。匹配正确的数据和分析有助于发现更好的方案,以优化企业的业务,对企业业务进行数字化变革。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司