问答详情

大数据可视化招聘岗位职责有哪些?

975次观看
标签: 大数据可视化 大数据可视化招聘
老师回答

大数据可视化招聘岗位职责:负责大数据项目前端展示模式规划构思和创意设计。 负责提供大数据可视化部分合理化的设计解决方案。 持续的优化相关的大数据可视化内容的质量、性能、用户体验。负责输出高质量可视化设计图,与开发团队充分沟通协作,确认可控的误差范围和视觉效果的最终实现,有较强的设计执行力。

岗位要求:

有良好的美术功底和优秀的创意、审美、实现能力,能把设计风格和专题、产品特色进行有效的结合;

具备C/S、B/S界面设计经验;

分析业务需求,并加以分解归纳出产品人机交互界面需求,熟练使用原型制作工具;

研发团队紧密协作,积极地推进视觉设计的产品化;

精通Photoshop/AI等常用设计制作软件,对图片渲染和视觉效果有较好认识;

了解html,div+css等网页编辑语言和规范标准的优先;

有大数据行业经验者优先考虑。

免费直播

    精选课程
    相关推荐
    大数据与数据分析师有哪些区别?
    宋老师 大数据工程师

    首先,大数据分析师是大数据时代背景下产生的一种新型技术岗位,与传统数据分析师的区别主要体现在三个方面,其一是技术体系结构不同;其二是岗位任务目的存在一定的区别;其三是工作场景具有一定的区别。

    ​对于大数据分析师来说,要具备更加全面的知识结构,涉及到大数据平台知识、算法设计知识、程序设计知识和具体的行业知识等,所以相对于传统的数据分析师来说,大数据分析师的从业门槛有了一定程度的提升。从目前行业领域的人才招聘情况来看,大数据分析岗位往往需要具有较高的学历要求,研究生往往更愿意从事相关岗位。

    大数据分析的目的与传统的数据分析目的也存在一定的区别,主要体现在两个方面,其一是大数据分析比较注重数据的价值化,简单的说,大数据分析的结果会提升数据的价值,而传统数据分析的目的往往是以应用为导向的。另一个区别在于,大数据分析的结果往往是为了提供给智能体使用,比如人工智能领域的算法训练、验证等过程都需要大数据分析的参与。

    在工作场景上,大数据分析与传统的数据分析也存在一定的区别,大数据分析往往需要借助于大数据平台进行,比如Hadoop、Spark,以及各种商用的大数据平台等,但是传统的数据分析往往会基于Excel或者是传统数据库进行。相对于传统数据分析工具来说,大数据分析的工具往往更加丰富,复杂程度也有明显的提升。

    大数据岗位方向都有哪些?
    刘老师 大数据工程师

    1、大数据开发工程师

    开发,建设,测试和维护架构;负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。

    2、数据分析师

    收集,处理和执行统计数据分析;运用工具,提取、分析、呈现数据,实现数据的商业意义,需要业务理解和工具应用能力。

    3、数据挖掘工程师

    数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。

    4、数据架构师

    需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力。

    5、数据库开发

    设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。

    6、数据库管理

    数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等。

    7、数据科学家

    数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换。

    8、数据产品经理

    把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司