工业数据分析主要有哪些应用?
617次观看1、从被动式到主动式维修
制造系统往往在超负荷状态下运行,任何工作中断都可能导致螺旋式上升的损失。即便如此,大部分公司采用的解决停机问题的最佳方案只不过是等故障发生后再解决的方式。到目前为止,这种反应性系统还在被采用,是因为显然缺少更好的替代方案。
2、提高机器利用率和有效性
制造商遇到的最大问题之一是进入低效运转的境况。虽然主观上他们希望构建高效的制造链,但由于安装不当、使用不当或仅缺乏停机时间协调,各种不同的因素都可能会成为降低生产线整体效率中的关键。
通过将现有的物联网系统与强大的制造业预测分析相结合,企业可以实时洞察其生产线在微观和宏观上的运行状况。追踪单台机器的停机时间如何影响整个制造链,或者探索不同的配置如何提高整体效率,这不是“痴人说梦”,而是必须要做到的。生成可操作的数据以使企业在整个制造过程中实现真正的改进,是将分析应用于制造业的主要优势。
3、更好地产品需求预测
每个制造商都知道他们不仅在为当前已有的订单生产产品,而且还在为不久的将来可能出现的需求订单生产产品。需求预测很重要,因为它们能够指导生产链,如果预测失误,可能产生“一边是强劲的销售量”,而“另一边却是工厂缺乏大量的相应配件库存,无法满足需求”。对于大多数公司而言,预测是基于前几年的历史数据价值,而不是基于更具可行性的前瞻性数据。但是,制造商可以将现有数据与预测分析相结合,以更精确地预测购买趋势。这些预测性见解不仅基于先前的销售,还基于流程以及生产线的运行状况,从而可以更明智地进行风险管理并减少生产浪费。
4、质量预测提高良率
质检是对已经生产出来的产品的质量检测,一方面可以保障企业能够对外提供合格产品,另一方面也能通过质检反映生产过程的疏漏。质检出的残次品无论多少对企业都是损失,如果能够在产品产出之前就通过产线状态及相关生产数据分析预测出产品质量,并将生产流程调整为最佳产出状态以避免残次品,这就是质量预测。质量预测的场景在半导体等高端制造领域是刚需,属于虚拟量测的范畴。
©本文版权归环球青藤所有,任何形式转载请联系我们。