问答详情

数据分析包括哪些内容?

2089次观看
标签: 数据分析 数据分析内容
老师回答

1.数据获取

数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。

2.数据处理

数据的处理需要掌握有效率的工具:Excel基础、常用函数和公式、数据透视表、VBA程序开发等式必备的;其次是Oracle和SQL sever,这是企业大数据分析不可缺少的技能;还有Hadoop之类的分布式数据库,也要掌握。

3.分析数据

分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。SPSS、SAS、Python、R等工具,多多益善。

4.数据呈现

可视化工具,有开源的Tableau可用,也有一些商业BI软件,根据实际情况掌握即可。

免费直播

    相关推荐
    如何高效的运用网站分析工具?
    刘老师 数据分析师

    1、工具使用第一重:仅仅是页面流数据

    很多人把工具生成的代码往网站页面上一贴,认为网站的跟踪代码配置就基本完成了。但事情并没有那么简单,分析系统中生成的跟踪代码只能简单的跟踪页面流的数据,比如访问数、浏览量、流量来源等等,用户与网站的交互行为比如表单提交、订单达成是无法跟踪得到的。

    网站的跟踪代码应该要根据具体的网站业务需求来配置跟踪方案。在添加跟踪代码前需要相关的业务人员聚在一起讨论把数据跟踪需求整理出来,根据需求形成一个完成的跟踪方案,从而生成相应的跟踪代码并添加到网站中。

    很多网站甚至是一部分电商网站都只是做到了这一步,但其实这远远没有把网站跟踪系统的功能发挥出来。

    因为受限跟踪配置的内容,系统只能收集到页面流的数据,因此用户也只能简单地查看网站的访问数、页面的浏览量以及流量来源的相关数据,但用户来到了网站有没有一些非浏览量的交互行为,是否有产生订单或产生了哪些产品的订单,无从得知。因此也没有明确的指标用于指导网站优化和外部推广(仅有的跳出率是不够的)。

    2、工具使用第二重:配置了目标或电子商务跟踪

    有部分用户在页面流数据跟踪的基础上会增加目标与电子商务数据的跟踪配置,这就进入我们所说的“网站分析第二重”。

    目标与电子商务数据是衡量网站绩效的重要指标。对于会员制的电商网站来说,一个非常重要的目标就是会员数据的增加,而电子商务销售则是网站的终极目标。对这两块数据进行跟踪,我们就可以很好地衡量网站与及流量来源的转化情况。

    把目标与电子商务的数据跟踪起来后,我们就可以把转化的数据与流量来源及页面浏览行为相关联,我们就可以很好地分析网站流量来源与页面浏览行为的转化情况。从而知道从哪些流量来源过来的流量质量最高,哪些产品或页面的说服力更强可以吸引用户完成订单转化,这样我们就可以有针对性地增加那些转化率高的流量来源的流量,并对一些转化偏低的产品或页面进行优化。

    3、工具使用第三重:完善了访问行为细节的跟踪与分析

    在这个分类下你会较为注重对于用户行为细节的跟踪,从而配置相应的自定义事件跟踪。对于用户在网站上的一些行为我们可以系统性地进行跟踪,比如站内搜索、视频播放、文件下载、表单提交、404错误页面、导出链接的点击、评论提交等等行为我们都可以跟踪起来,从而更好地了解访客的访问行为以提升网站的访问体验和转化率。

    如第二重的内容所说的,你可能会把注册成功作为网站的目标,除了跟踪注册提交成功的事件外,你还可以跟踪注册的方式(是否通过第三方工具帐号进行注册)、注册提交失败的次数与及失败的原因等等。

    除了订单产生的数量,购买流程中每一步的微转化也是值得关注的,找出转化流程中的弱项和问题,想办法修复它,这对于销售的提升效果将是非常明显的。

    对于电商网站来说,用户是否有点击站内广告的行为,从而购买广告推介的产品,我们要怎么完善我们的产品推荐系统,这些都需要数据作支持。

    我们还强烈建议可以对站内搜索与搜索零结果(搜索结果的条目数量)的情况进行跟踪,从而衡量网站的产品或内容是否满足用户的搜索需求,从而增加相应的产品或内容以提升网站销售。而对于一个客服系统来说,优化好这一步,这有可能会大幅减少客服人员的工作量。

    4、工具使用第四重:基于数据的网站优化—数据驱动营销

    在前边三部分其实也应该把网站优化的工作纳入其中,但对于大多数公司来说,网站优化这一步大都做得不好或是做得不够系统。而网站优化是网站运营过程中不可或缺的一个重要环节。

    很多人做的网站分析报告仅仅是停留在报告的层面而没有形成优化行动,这就失去了网站分析的意义。根据报告中提出的有效建议,可以考虑安排进行营销活动或页面内容的优化工作。

    通过数据分析找出更优的推广渠道;同时对内容特别是着陆页面的内容进行A/B/N测试,找出最优的页面版本,这将可以有效地提升网站的转化率从而提升网站的销售!这是网站分析对于提升网站业绩的最直观体现。

    数据挖掘常用的方法有哪些?
    刘老师 数据分析师

    1、分类

    分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。

    主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。

    2、聚类

    聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,聚类是一种无监督学习。

    聚类的方法(算法):主要的聚类算法可以划分为如下几类,划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法。每一类中都存在着得到广泛应用的算法, 划分方法中有 k-means 聚类算法、层次方法中有凝聚型层次聚类算法、基于模型方法中有神经网络聚类算法。

    3、回归分析

    回归分析是一个统计预测模型,用以描述和评估因变量与一个或多个自变量之间的关系;反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系。

    回归分析的应用:回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。

    回归分析的主要研究问题:数据序列的趋势特征、数据序列的预测、数据间的相关关系等。

    4、关联规则

    关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则是描述数据库中数据项之间所存在的关系的规则。

    5、神经网络方法

    神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的问题,以及那些以模糊、不完整、不严密的知识或数据为特征的问题,它的这一特点十分适合解决数据挖掘的问题。

    6、Web数据挖掘

    web数据挖掘是一项综合性技术,指Web从文档结构和使用的集合C中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

    7、特征分析

    特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。

    8、偏差分析

    偏差是数据集中的小比例对象。通常,偏差对象被称为离群点、例外、野点等。偏差分析就是发现与大部分其他对象不同的对象。

    数据挖掘的常用方法有哪些?
    刘老师 数据分析师

    1、决策树法

    决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。

    2、神经网络法

    神经网络法是模拟生物神经系统的结构和功能,是一种通过训练来学习的非线性预测模型,它将每一个连接看作一个处理单元,试图模拟人脑神经元的功能,可完成分类、聚类、特征挖掘等多种数据挖掘任务。神经网络的学习方法主要表现在权值的修改上。其优点是具有抗干扰、非线性学习、联想记忆功能,对复杂情况能得到精确的预测结果;缺点首先是不适合处理高维变量,不能观察中间的学习过程,具有“黑箱”性,输出结果也难以解释;其次是需较长的学习时间。神经网络法主要应用于数据挖掘的聚类技术中。

    3、关联规则法

    关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。

    4、遗传算法

    遗传算法模拟了自然选择和遗传中发生的繁殖、交配和基因突变现象,是一种采用遗传结合、遗传交叉变异及自然选择等操作来生成实现规则的、基于进化理论的机器学习方法。它的基本观点是“适者生存”原理,具有隐含并行性、易于和其他模型结合等性质。主要的优点是可以处理许多数据类型,同时可以并行处理各种数据;缺点是需要的参数太多,编码困难,一般计算量比较大。遗传算法常用于优化神经元网络,能够解决其他技术难以解决的问题。

    5、聚类分析法

    聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。根据定义可以把其分为四类:基于层次的聚类方法;分区聚类算法;基于密度的聚类算法;网格的聚类算法。常用的经典聚类方法有K-mean,K-medoids,ISODATA等。

    6、模糊集法

    模糊集法是利用模糊集合理论对问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。模糊集合理论是用隶属度来描述模糊事物的属性。系统的复杂性越高,模糊性就越强。

    7、web页挖掘

    通过对Web的挖掘,可以利用Web的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。

    8、逻辑回归分析

    反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。

    9、粗糙集法

    是一种新的处理含糊、不精确、不完备问题的数学工具,可以处理数据约简、数据相关性发现、数据意义的评估等问题。其优点是算法简单,在其处理过程中可以不需要关于数据的先验知识,可以自动找出问题的内在规律;缺点是难以直接处理连续的属性,须先进行属性的离散化。因此,连续属性的离散化问题是制约粗糙集理论实用化的难点。

    10、连接分析

    它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于企业的研究。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司