问答详情

数据分析岗位发展前景怎样?

683次观看
标签: 数据分析岗位 数据分析岗位发展前景
老师回答

不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等前端的职位都通过数据分析来帮助自己工作,甚至连财务、法务、人事等也开始需要通过数据分析来提升效率。

从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。北京、上海和深圳的薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。

从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。

从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。

免费直播

    相关推荐
    数据挖掘免费软件工具有哪些?
    刘老师 数据分析师

    1.Rapid Miner

    Rapid Miner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界领先的数据挖掘开源系统。该工具以Java编程语言编写,通过基于模板的框架提供高级分析。

    它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。最好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。

    2. IBM SPSS Modeler

    IBM SPSS Modeler工具工作台最适合处理文本分析等大型项目,其可视化界面非常有价值。 它允许您在不编程的情况下生成各种数据挖掘算法。 它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。

    3.Oracle Data Mining

    Oracle。 作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。

    Oracle Data Miner GUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。 它还可以为整个企业的自动化、调度和部署创建SQL和PL / SQL脚本。

    最常用的四种大数据分析方法有哪些?
    刘老师 数据分析师

    1.描述型分析:发生了什么?

    这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

    例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

    2.诊断型分析:为什么会发生?

    描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

    良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

    3.预测型分析:可能发生什么?

    预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

    预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

    在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

    4.指令型分析:需要做什么?

    数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

    例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司