问答详情

实验数据分析报告怎么写?

4775次观看
标签: 实验数据分析 实验数据分析报告
老师回答

1、确定报告框架

先确定分析报告的主体架构,只有清晰的架构,才能规划好整个报告的主题,结构才能让阅读者一目了然。同时要找准论点、论据,这样能够体现出强大的逻辑性。

2、数据源的获取

数据源是数据分析的基础,很多分析报告在进行数据的挖掘收集时,缺乏科学依据性,逻辑性差,保证正确全面的数据源很重要。

3、数据处理

数据处理的目的:从大量的、杂乱无章的数据中抽取出对解决问题有价值、有意义的数据。将多余重复的数据筛选清除,将缺失数据补充完整,将错误数据纠正或删除。

4、数据分析

结论明确精简:结论要根据数据说话,力求结论做到严谨、专业。每个分析都有结论,而且结论—定要明确,分析结论不要太多要精,—个分析对应—个最重要的结论就好了,分析就是发现问题,只要发现重大的问题就达到目的了。

严谨的推导过程:分析结论—定要基于严谨的数据分析推理过程,不能有猜测性的结论,这是因为主观的东西会没有说服力。

有实际应用性:数据分析报告要客观公正,发现问题并提出解决方案。既然在了解产品并在了解的基础上做了深入的分析,才可能比别人都更清楚地发现了问题以及问题产生的原因,那么在这个基础之上根据自己的知识,做出的建议和结论,就能够让整个过程都十分的有意义。

5、可视化展示

分析数据的时候尽量要用数据说话,选用生动的图表等来展示报告的分析结果,才能够更加直观的展示结论。从而能得到一个更有说服力的结论。

免费直播

    相关推荐
    数据分析思路都有哪些?
    刘老师 数据分析师

    1、趋势分析

    最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。

    2、多维分解

    也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。

    3、用户分群

    针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。

    4、漏斗分析

    按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。

    5、留存分析

    留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。

    6、A/B 测试

    A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。

    7、对比分析

    分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。

    8、交叉分析

    交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司