问答详情

数据分析师应该学习哪些语言?

1581次观看
标签: 数据分析师 数据分析师学习语言
老师回答

1、R语言:免费、开源;专门为统计和数据分析而开发,基础安装也包含全面的统计功能和函数;数据可视化功能强大。

2、Python语言:是一门主流编程语言,有着广泛的在线支持;有诸如谷歌 Tensor flow 这样优秀的 package,使得机器学习框架都偏向于采用Python语言;易于学习,入门容易。

3、SQL语言:SQL 是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统,是最重要的关系数据库操作语言。

4、Java语言:Java 是静态面向对象编程语言的代表,具有面向对象、分布式、平台独立与可移植性、多线程、动态性等特点,目前由甲骨文公司提供技术支持。

5、Scala语言:一门多范式的编程语言,类似 Java,于 2004 年问世,设计初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的各种特性。

6、Julia语言:是一款刚出现没几年的面向科学计算的高性能动态高级程序设计语言。

免费直播

    相关推荐
    提升企业数据分析能力的技术有哪些?
    刘老师 数据分析师

    1.回归分析

    当您需要进行预测和预测未来趋势时, 回归分析是很好的工具。回归测量因变量 (要测量的变量) 和自变量 (用于预测因变量的数据) 之间的关系。虽然你只能有一个因变量, 但你可以有几乎无限数量的独立变量。回归还可以帮助您发现运营中可以通过突出趋势和因素之间的关系来优化的业务点。

    2.假设检验

    这种分析方法也称为“T 测试”, 可将所拥有的数据与假设进行比较。它还可以预测可能做出的决策将如何影响您的业务。T 测试可以比较两个变量, 以找到相关性, 并根据结果做出决策。例如, 实际业务中可能会假设更多的工作时间相当于更高的生产率。在实施延长工作时间之前, 重要的是要确保有真正的效果, 以避免造成不好的反作用。

    3.蒙特卡洛模拟

    作为计算不可预知变量对特定因子影响的最常用方法之一, 蒙特卡罗模拟使用概率建模来帮助预测风险和不确定性。为了测试假设或场景, 蒙特卡洛模拟将使用随机数和数据, 根据任何结果对任何情况进行各种可能的结果进行分析。这是一个非常有用的数据分析方法,可以跨越多个领域应用,包括项目管理、财务、工程、物流等等。通过测试各种可能性,可以了解随机变量如何影响您的计划和项目。

    4.内容分析

    这种方法有助于了解定性数据中出现的总体主题。使用词云图颜色编码特定主题和想法等技术有助于分析文本数据,以找到最常见的线程。在处理用户反馈、访谈数据、开放式调查等数据时,内容分析可以很好地工作。这有助于确定需要改进的最重要领域。

    5.叙事分析

    叙事分析主要包含五个要素,即行动(act)、场景(scene)、行动者(agent)、能动性(agency)和目的(purpose)。这种分析侧重于故事和想法在整个公司的沟通方式,可以帮助你更好地了解组织文化。这可能包括解释员工对其工作的感受、客户对组织的看法以及如何查看运营流程。它在考虑改变企业文化或规划新的营销策略时非常有用。

    没有统计分析的黄金标准,也没有绝对正确的方法。选择的方法应始终反映收集的数据以及要提取的解决方案类型。匹配正确的数据和分析有助于发现更好的方案,以优化企业的业务,对企业业务进行数字化变革。

    最常用的四种大数据分析方法有哪些?
    刘老师 数据分析师

    1.描述型分析:发生了什么?

    这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。

    例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。

    2.诊断型分析:为什么会发生?

    描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。

    良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。

    3.预测型分析:可能发生什么?

    预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。

    预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。

    在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。

    4.指令型分析:需要做什么?

    数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

    例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司