问答详情

大数据可视化存在价值是什么?

625次观看
标签: 大数据可视化存在价值 大数据可视化
老师回答

①快速建立部署

使用丰厚强壮的功能,快速建立前端剖析界面和剖析流程,缩短使用运营周期,降低企业本钱。

②立体数据动态出现

经过大数据的动态出现,智能剖析,运用互联网对数据实时监控,使得展现的作用动态演绎在面前。

③灵敏搭配提高费效比

轻量级解决方案完成灵敏的大数据可视化,数据展现,数据融合,灵敏高效的满足所需。

④支撑移动端数据

数据展现渠道的适应性强壮,满足与后台的无缝对接,移动端丰厚展现,愈加便捷的把握数据改变趋势。

免费直播

    相关推荐
    数据分析惯用的5种思维方法是什么?
    刘老师 数据分析师

    一、对比法

    对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

    我们知道孤立的数据没有意义,有对比才有差异。一些直接描述事物的变量,如长度、数量、高度、宽度等。通过对比得到比率数据,增速、效率、效益等指标,这才是数据分析时常用的。

    比如用于在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。

    二、象限法

    通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常于产品分析、市场分析、客户管理、商品管理等。

    三、二八法/帕累托分析

    二八法也可以叫帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

    一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有500个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。

    常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。

    百分比在 70%(含)以内,划分为 A 类。

    百分比在 70~90%(含)以内,划分为 B 类。

    百分比在 90~100%(含)以内,划分为 C 类。

    以上百分比也可以根据自己的实际情况调整。

    ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。

    四、漏斗法

    漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。

    五、公式法

    所谓公式法就是针对某个指标,用公式层层分解该指标的影响因素。

    举例:分析某产品的销售额较低的原因,用公式法分解:

    ①某产品销售额=销售量 X 产品单价

    ②销售量=渠道A销售量 + 渠道B销售量 + 渠道C销售量 + …

    ③渠道销售量=点击用户数 X 下单率

    ④点击用户数=曝光量 X 点击率

    第一层:找到产品销售额的影响因素。某产品销售额=销售量 X 产品单价。是销量过低还是价格设置不合理?

    第二层:找到销售量的影响因素。分析各渠道销售量,对比以往,是哪些过低了。

    第三层:分析影响渠道销售量的因素。渠道销售量=点击用户数X 下单率。是点击用户数低了,还是下单量过低。如果是下单量过低,需要看一下该渠道的广告内容针对的人群和产品实际受众符合度高不高。

    第四层:分析影响点击的因素。点击用户数=曝光量X点击率。是曝光量不够还是点击率太低,点击率低需要优化广告创意,曝光量则和投放的渠道有关。

    通过对销售额的逐层拆解,细化评估以及分析的粒度。

    公式拆解法是针对问题的层级式解析,在拆解时,对因素层层分解,层层剥尽。

    数据分析师应该具备的素质有哪些?
    刘老师 数据分析师

    1、态度严谨负责

    严谨负责是数据分析师的必备素质之一,只有奔着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结的问题。

    2、好奇心强烈

    好奇心热皆有之,但是作为数据分析师,这份好奇心就应该更加强烈,要积极主动地发现挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果是不预期的那样等等,这一系列问题都要在进行分析时提出来,并且通过通过数据分析给自己一个满意的答案。

    3、逻辑思维清晰

    除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。

    通常从事数据分析时所面对的商业问题较为复杂,要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要数据分析师对事实的足够了解,同时也是需要真正理清问题的整体以及局部的结构进而理清结构中相互的逻辑关系。

    4、擅长模仿

    在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速的成长,因此,模仿是快速提高学习成果的有效方法。模仿主要是参考他人优秀的思路和方法,成功的模仿需要领会他人方法的精髓,理解其成分析原理。

    5、勇于创新

    通过模仿可以借鉴他人的成功经验,但模仿时间不宜太长,每次模仿后都要进行总结,提升可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断创新,才能提高自己的分析水平。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司